Town of Kittery
 Planning Board Meeting
 July 11, 2019

ITEM 3-76 Dennett Road - Mixed-Use Residential Development - Site Preliminary Plan Review
Action: Accept or deny application. Schedule public hearing. Owners William J. Cullen and Sail Away, LLC and applicant William Wharff request consideration of a mixed-use residential development on 23.3+- acres of land at 76 Dennett Road (Tax Map 6 Lots 15B \& 16A and Tax Map 13, Lot 4) in the Mixed Use - Neighborhood (MU-N) Zone. Agent is Shawn Tobey, P.E. Hoyle, Tanner Associates, Inc.

PROJECT TRACKING

REQ'D	ACTION	COMMENTS	STATUS
YES	Sketch Plan Acceptance/Approval	$5 / 9 / 20-19$ Meeting	APPROVED
NO	Site Visit		
YES	Preliminary Plan Review Completeness/Acceptance	Scheduled for 7/11/2019 Meeting	PENDING
YES	Public Hearing		
YES	Preliminary Plan Approval		
YES	Final Plan Review and Decision		
Applicat.	Prior to the		

Applicant: Prior to the signing of the approved Plan any Conditions of Approval related to the Findings of Fact along with waivers and variances (by the BOA) must be placed on the Final Plan and, when applicable, recorded at the York County Registry of Deeds. PLACE THE MAP AND LOT NUMBER IN 1/4" HIGH LETTERS AT LOWER RIGHT BORDER OF ALL PLAN SHEETS. As per Section 16.4.4.L - Grading/Construction Final Plan Required. - Grading or construction of roads, grading of land or lots, or construction of buildings is prohibited until the original copy of the approved final plan endorsed has been duly recorded in the York County registry of deeds when applicable.

Background

This is now a preliminary plan review for completeness and acceptance. The site consists of three (3) parcels totaling $23.3+$ - acres which will be merged for the proposed development. The development proposes one four-story mixed-use residential building with $3,000 \mathrm{sf}$ of mercantile space along Dennett Road, two four-story residential buildings at the rear of the site, a 5,250 sf amenity building, and five covered parking structures in various locations in the parking lot.

The residential buildings will have a mix of studio, one-bedroom and two-bedroom units totaling 303 dwelling units. The design includes the construction of a private roadway, parking lots totaling 401 spaces, landscaping, sidewalks, a pool and outdoor amenity space, a nature trail, supporting utilities and drainage infrastructure.

At the May 9 meeting, the Board accepted and approved the sketch plan for the proposed development.

Staff Review

Mixed-Use Requirements

1. All of the proposed uses are permitted in the newly created MU-N Zone. The residential units comply with the minimum land area per dwelling unit - mixed-use building and multiunit residential requirements.

Net Residential Acreage / Density

The MU-N Zone is exempt from Title 16.7.8.2 Net Residential Acreage Calculation but is subject to the minimum land area per dwelling unit as defined in Chapter 2 Definitions except that 50% of all wetlands may be subtracted, rather than 100%. As shown on sheet C5 Overall Site Plan, the proposed development meets the land area per dwelling unit calculations of the MU-N Zone.

Parking Requirements

2. Per Section 16.3.2.10.F. (4) (d) [1] and [2], Parking for development that includes trails and low intensity recreation: Development that includes the creation of public trails and low intensity recreational opportunities such as wildlife observation stations or boardwalks may apply the pertinent off-street parking standards below. All other off-street parking standards as found in § 16.8.9.4 shall apply.

Multiunit residential buildings and mixed-use buildings that include residential.

- One parking space for studio and one-bedroom dwelling units.
- One and one-half parking spaces for two-bedroom dwelling units plus one guest parking space per every four dwelling units.
- Parking spaces for more-than-two-bedroom dwelling units.

3. Parking calculations are listed on sheet C5 of the preliminary plans. The development will provide a total of 401 spaces:
a. Front Building $=114$ spaces
b. Rear Buildings $=287$ spaces

The provided parking meets and exceeds the Ordinance requirements.

Landscaping, Screening and Buffers

4. The landscaping, screening and buffering details are provided on sheets C17 and C18. The proposed development will be generously landscaped and appears to meet the requirements of the MU-N zone.

Wetlands / Open Space

5. The existing property contains wetlands and a vernal pool. Per the regulations for the MU-N zone, the wetlands and vernal pool were reviewed by Longview Partners, LLC as a third-party reviewer in April 2019. The review found the wetlands delineation to be accurate and within the normal range of best professional judgement and consistent with wetlands delineation standards.

Staff researched the question regarding previously approved wetlands impacts. On February 14, 2002, the Planning Board approved the site plan for a Professional and Business Park proposed by William Cullen which permitted approximately 1600 sf of total wetlands fill, primarily for a road crossing of wetlands. A permit will be required for a modification to the previously approved wetlands crossing and for disturbance to the vernal pool buffer (250'). There will be no disturbance within the vernal pool buffer (100') or the wetlands. The wetlands, vernal pool and property lines shown on the preliminary plan are based on actual survey data. Sheet C5 Overall Site Plan contains Vernal Pool Buffer Calculations, which includes 24,535 sf of buffer restoration.
6. Open space meeting the requirements of the zone will be provided (73.5% of the parcel) which will include a nature loop trail with wildlife viewing stations for passive recreation for the development. An Amenities building (Building 4) and an outdoor pool are also proposed to provide recreational use for the residents of the property.

Utilities / Site Improvements

7. The plans show detailed information regarding utilities that will service the site development. Water, gas, electrical and telecommunication lines will be extended from Ranger Drive along Dennett Road to serve the site. They will be constructed underground underneath the proposed private roadway. Existing sewer is located at the rear of the property and will be extended onto and throughout the site underneath the roadway.

The applicant's engineer has met with the Kittery Water District and the Kittery Sewer Department and letters are provided to confirm they both have adequate capacity for the proposed development.

Proposed Fire Department connections are shown and noted on the plans. The Fire Chief has reviewed the plans for fire service during staff technical review and will be providing comment as the project moves through Preliminary Plan review.

Stormwater Management

8. Under Section 16.10.5.2.C supporting documentation must include a stormwater management plan. The applicant has submitted a Drainage Narrative to comply with Maine Department of Environmental Protection (MEDEP) Stormwater Site Location of Development Law.

According to the narrative, "The drainage design utilizes the existing hydrologic and hydraulic patterns, minimizes impacts to surrounding areas, and uses Maine’s Best Management Practices (BMPs) to provide effective pollutant removal, stormwater cooling, channel protection, and flood control for pre-development and post-development peak runoff rates for the proposed site development."

A copy of the narrative has been forwarded to CMA Engineers for their review and comment. The narrative and grading and drainage plans are also being reviewed by the Town’s Stormwater Coordinator in coordination with DPW.

Jessa Kellogg, Shoreland Resource Officer/Stormwater Coordinator has provided a memorandum (attached) with hers and Public Works Commissioner David Rich's initial comments regarding the stormwater management plans. In the memo, they have also provided comments relative to proposed sidewalk along Dennett Road.

Other Reviews

9. The Board will find included in the packets for this item a letter from CMA Engineers with their initial review comments on the preliminary plans for conformance with Title 16 and general engineering practices.
10. Jessa Kellogg, Interim Code Enforcement Officer, has also provided a memorandum regarding her initial building code review conceptual floor plans that have been submitted.

Recommendation / Action

Preliminary Plan review begins the formal permitting process for a site plan / subdivision. The application and plans are complete for acceptance purposes and sufficient to schedule a public hearing.

Move to accept and approve the site preliminary plan, dated June 20, 2019 as prepared by Hoyle, Tanner \& Associates, Inc., for owners William J. Cullen and Sail Away, LLC and applicant William Wharff for a mixed-use residential development on 23.3+- acres of land at 76 Dennett Road (Tax Map 6 Lots 15B \& 16A and Tax Map 13, Lot 4) in the Mixed Use - Neighborhood (MU-N) Zone.

Move to schedule a public hearing on \{date\} on the site preliminary plan, dated June 20, 2019 as prepared by Hoyle, Tanner \& Associates, Inc., for owners William J. Cullen and Sail Away, LLC and applicant William Wharff for a mixed-use residential development on 23.3+- acres of land at 76 Dennett Road (Tax Map 6 Lots 15B \& 16A and Tax Map 13, Lot 4) in the Mixed Use - Neighborhood (MU-N) Zone.

Town OF Kittery

Department of Public Works
200 Rogers Road, Kittery, ME 03904

Telephone: 207-439-0333 Fax: 207-439-6816

MEMORANDUM

Meeting Date: July 2, 2019
From: David Rich, Public Works Commissioner Jessa Kellogg, Shoreland Resource Officer/Stormwater Coordinator

Subject: Review of Preliminary Plan for 76 Dennett Road

PUBLIC WORKS COMMENTS

The proposed mixed-use development project is within the Town's urbanized area and is subject to MS4 review and oversight at the town level in addition to any required DEP permitting. The plans appear to show sufficient stormwater management for the site, including adequate erosion and sedimentation control measures and three wet ponds with two ponds discharging stormwater to the rear of the property. The first wet pond and existing wetland pocket at the front of the property discharge to two culverts under Dennett Road which triggers Title 16.8.8.2 Post-construction stormwater management criteria. Appendix G Inspection and Maintenance Manual in the Drainage Narrative dated June 20, 2019 does not meet these criteria for annual reporting to the Town. It is recommended that the applicant work with staff to ensure the annual inspection and reporting requirements are fully incorporated into Association documents.

Sidewalks are required per Table 1 of Title 16.8. The preliminary plans show a sidewalk running the length of the property from the entrance northwest along Dennett Road, however no sidewalk is shown on the southeast side of Dennett Road. At a pre-application meeting the applicant had considered installing a crosswalk at the entrance to connect to a sidewalk on the opposite side of the road running the length of the property. There is a sidewalk further down on the west side of Dennett Road that the Town could connect to in the future so would like to see the applicant install this crosswalk and portion of sidewalk. The applicant had also considered contacting Coast bus services about adding a bus stop at the entrance of the development, has this happened? Though not required, if a stop is added this will impact how the sidewalk is configured.

Town OF Kittery

Code Enforcement Office

200 Rogers Road, Kittery, ME 03904
Telephone: 207-475-1308 Fax: 207-439-6806

MEMORANDUM

Meeting Date: July 2, 2019
From: Jessa Kellogg, Interim Code Enforcement Officer
Subject: Review of Preliminary Plan for 76 Dennett Road

The conceptual floor plans submitted show three sizes of units, including studios averaging 650SF, 1bed averaging 710SF and 2-bed averaging 900SF. It is not clear if these sizes meet the dwelling unit minimum requirements and what is meant by averaging. Are all of the unit types not the same square footage? Per the definition of a dwelling unit in Title 16.2.2, each unit must comprise at least 650 square feet of habitable floor space. While "habitable floor space" is not specifically defined in Town Code, Title 16.2.1 states that except where specifically defined in this chapter, all words in this title carry their customary dictionary meanings. Code Enforcement staff consistently defers to State-level definitions for building code related definitions. The State of Maine has adopted the 2015 International Building Code (IBC) as part of the Maine Uniform Building and Energy Codes (MUBEC), therefore Code staff would look to the definition of habitable space and habitable room area (i.e. bedroom) as defined in the IBC for the customary definition used State-wide (see below for excerpted definitions). The plans list "MEP, T/D, and CTL" without a key to understand what those spaces in the building are for.

2015 INTERNATIONAL BUILDING CODE, CHAPTER 2 DEFINITIONS

HABITABLE SPACE - A space in a building for living, sleeping, eating or cooking. Bathrooms, toilet rooms, closets, halls, storage or utility spaces and similar areas are not considered habitable spaces.

FLOOR AREA, NET - The actual occupied area not including unoccupied accessory areas such as corridors, stairways, ramps, toilet rooms, mechanical rooms and closets. (Italicized print further defined in IBC Definitions chapter)

2015 INTERNATIONAL BUILDING CODE, CHAPTER 12 INTERIOR ENVIRONMENT

Section 1208.3 Room area.
Every dwelling unit shall have no fewer than one room that shall have not less than 120 square feet (11.2 m squared) of net floor area. Other habitable rooms shall have a net floor area of not less than 70 square feet (6.5 m squared).

Exceptions: Kitchens are not required to be of a minimum floor area.
Jamie Steffen, Town Planner
Town of Kittery
200 Rogers Road
Kittery, Maine 03904

RE: \quad| Town of Kittery, Planning Board Services |
| :--- |
| Mixed-Use Development Proposal - 76 Dennett Road |
| \quad Lots 6-15B, 6-16A, 13-4 |
| Preliminary Plan Approval Application |
| CMA \#591.125 |

Dear Jamie:

CMA Engineers has received the following information for Assignment \#125, review of the Mixed-Use Development at 76 Dennett Road (Tax map Lots 6-15B, 6-16A, and 13-4):

1) Proposed Mixed-Use Residential Development Project plans prepared by Hoyle Tanner and Associates of Portsmouth, NH dated June 20, 2019.
2) Architectural elevations and sketches of proposed buildings, prepared by CUBE3 of Lawrence MA, dated June 11 and 17, 2019.
3) Drainage Narrative for Proposed Mixed-Use Residential Development Project plans prepared, by Hoyle Tanner and Associates Dated June 20, 2019.
4) Transmittal letter signed by Shawn Tobey, P.E.; letter from Kittery Water District dated May 30, 2019; letter from Kittery Sewer Department dated May 23, 3019.

We have reviewed the information submitted for conformance with the Kittery Land Use and Development Code (LUDC) and general engineering practices and offer the comments below that correspond directly to the Town's Ordinances.

Background

The proposed project includes is in the recently established Mixed-Use-Neighborhood District. It is located on over 23 acres north of 76 Dennett Road between Dennett Road, I-95, and a utility easement. There are three existing lots that are proposed to be combined into a single lot. This significant project includes three major buildings as follows:

Building 1: A 4-story mixed-use building near Dennett Road with 64 residential units and 3,000 sf of commercial space on the first floor,

Building 2: A two-part 4-story residential building with 150 residential units,
Building 3: A 4-story residential building with 89 residential units.
There are several other garages and associated structures, a pool, and other amenities.

A total of 303 residential units are proposed; primarily studio apartments, and 1- and 2-bedroom apartments.

The development is proposed in two general sections: an area near Dennett Road, and an area approximately 600 feet east of Dennett Road. An on-site roadway is proposed to connect these areas. In addition to internal sidewalks, sidewalks are also proposed to connect to Dennett Road.

The project includes service by full utilities, including public water and sewer, power, gas, and communications.

Stormwater management is proposed using three major stormwater treatment units, connected to site features by drainage pipes.

There are wetlands on the site, including a vernal pool. No direct impacts to or filling of wetlands are included.

16.3 Zoning Regulations

16.3.2.10 Mixed-Use Neighborhood (MU-N)
B. The proposed uses, business and professional offices and Multiunit dwellings are permitted uses
F. (1), (2), (3) Standards including land area, Dimensional standards and setbacks, Impervious Cover, Dimensional Standards.
The provisions of these requirements are met with the proposed development

F. (4) Parking

- Part of the parking for Building 1. Is in the front of the building, which requires review and confirmation and approval of the Planning Board.
- There are 401 proposed parking spaces (114 for Building 1. and 287 for Buildings 2. and 3.) This number exceeds the calculated requirements for parking by the various residential and commercial uses.
F. (8) Building design standards
- This section references the Kittery Design Handbook. We have not evaluated the design with respect to the Handbook.
- We note that the buildings are large in area and height and would be the largest multi-unit residential structures in Kittery.
- It is described, but not graphically shown that the building height meets the 50' standard.
- Flat roofs are proposed.
F. (9) Landscaping, Screening and buffers
(a) The landscaping plan appears not to have been prepared by a registered landscape architect. It is detailed, with extensive plantings with multiple species. The applicant should describe how
the plan was developed, and the qualifications of the designer. The Planning Board may desire a landscape architects design input, as provided in this provision of the ordinance.
(b) (3) This standard requires that a minimum of 10% pf surface parking areas be landscaped with trees and vegetated islands. No such vegetated features are not included in the design. There are light poles extending into the parking area. Perhaps these could be expanded to include vegetation. There may be other ways to comply with the requirement.

F. 10 Open Space

- The site plan includes significant areas of open space. Much of it is wetlands, including the vernal pool. However, it is not designated with notes dedicating it as open space.
- The plan does include a limited network of walking trails.

16.8 Design and Performance Standards-Built Environment

Article IV. Streets and Pedestrian Ways

While average daily trip counts are not given, this is proposed as an on-site roadway, so no Street standard technically applies. However, it would have a traffic count of over 1,000 vpd, so a "primary collector" street standard would apply.

The on-site roadway is proposed with 12^{\prime} lanes, vertical granite curbing, and a separated 5' sidewalk. This section appears satisfactory for the intended purposes.

The sight distance at Dennett Road is probably satisfactory due to grade and street alignment, but it should be reported.

The applicant acknowledges that a Maine DOT Traffic Movement Permit (TMP) is required and is being applied for. Documentation of this should be submitted to Kittery.

The applicant states that a full traffic study will be submitted to Kittery as the TMP process is more developed and scoped.

Article VI Water Supply

- The project is to be served by an extension of the Kittery Water District's system. The KWD has indicated its ability to supply the quantity of water required.
- The KWD suggests that booster pumping may be required to serve all the locations and elevations. How is that final decision going to be made? No provisions are currently made on the site plan for such facilities if needed.
- Has the separate fire supply line sizing been conformed? Has the KWD reviewed the details?

Article VII Sewage Disposal

- Conventional sewer services and sewerage layouts have been incorporated. The system ties into a sewer manhole on what appears to be a KWD interceptor. For clarity, the applicant should provide additional schematic details indicating how piping goes from that connection to the WWTP.
- Has the Kittery Sewer Department reviewed the design?

Article VIII. Surface Drainage

The stormwater management plan includes three major stormwater BMPs. So called "Wet ponds" are proposed to hydraulically control flows, and to treat stormwater. The layout is logical and fits into the existing topography and flow patterns well.
We have completed a brief review of the drainage narrative but have not evaluated it in detail. A more complete evaluation will be completed as part of the final design submittal.
We note that the applicant is commencing a Maine DEP Site Location of Development (SLOD) review. This is a comprehensive review of drainage and stormwater, wetlands, and other factors.

16.9 Design and Performance Standards-Natural Environment

Article II. Retention of Open Spaces and Natural or Historic Features

- Has there been any evaluation of the presence of historically significant sites or resources; or archaeological sources on the property?

Should you have any questions, please do not hesitate to call.
Very truly yours,

William A. Straub, P.E.
Project Manager
cc: Shawn Tobey, P.E., HTA

TOWN OF KITTERY

Sewer Department
200 Rogers Road
Kittery, ME 03904

Telephone: (207) 439-4646 Fax: (207) 439-2799
E-mail: tbabkirk@kitteryme.org
May 23, 2019

Shawn M. Tobey
Hoyle, Tanner \& Associates
100 International Drive, Suite 360
Portsmouth, NH 03801
Dear Mr. Tobey:
Per your request the Town of Kittery Maine Sewer Department has reviewed your plans for the project at 76 Dennett Road in Kittery.

The Kittery wastewater Treatment Plant has a monthly average flow limitation of 2.5 MGD. The Treatment Plant continues to operate with a monthly average flow around 1.0 MGD.

My calculations for the Dennett Road Project have come out to an estimated 37,800 GPD which keeps the Treatment plant well within our Permit limit.

As the Superintendent of Sewer Services for the Town of Kittery we welcome the additional flow and wish you luck on your project.

Timothy Babkirk
Superintendent of Sewer Services
Town of Kittery, Maine

OFFICE OF

KITTERY WATER DISTRICT

17 State Road
Kittery, Maine 03904-1565
TEL: 207-439-1128
FAX: 207-439-8549
Email: kitterywater@comcast.net

Kittery Planning Board
200 Rogers Road
Kittery, ME 03904
May 30, 2019
Re: Sail Away, LLC - 76 Bennett Road, Kittery Proposed Development
Dear Planning Board Members,
Please accept this letter as verification that the Kittery Water District does have the capacity to supply municipal water service for both domestic and fire protection to 76 Dennett Road, Kittery where three 4 story apartment buildings are proposed. Due to the elevation of the property and the elevation of the top floor of the buildings, pressure pumps on both the domestic and fire service may be required to provide adequate water pressure.

Sincerely,

Michael S. Rogers
Superintendent
cc: Shawn M. Tobey, P.E. Project Manager, Hoyle, Tanner \& Associates, Inc.

Adam Causey, AICP
Town of Kittery
200 Rogers Road
Kittery, ME 03904
Re: Application for Site Review
Proposed Mixed-Use Residential

Pease International Tradeport 100 International Drive, Suite 360 Portsmouth, New Hampshire 03801 603-431-2520
603-431-8067 fax
umw.hoyletanner.com Development Project 76 Dennett Road, Kittery, ME 03904

Dear Mr. Causey,
On behalf of Aztec LLC, Hoyle, Tanner and Associates (Hoyle, Tanner) is pleased to submit this application for site review of the proposed development at 76 Dennett Road. The development includes the construction of a four (4) story mixed-use residential building with 3,000 S.F. of mercantile space along Dennett Road, two (2) residential buildings each four (4) stories at the rear of the site, an amenity building, and five (5) covered parking structures. The residential buildings will have a mix of studio, one bedroom and two bedroom units totaling 303 dwelling units. The design also includes the construction of a new private roadway, parking lots totaling 401 spaces, landscaping, sidewalks, pool, outdoor amenity space, nature trail, supporting utilities, and drainage infrastructure to support the development.

The drainage systems for the new development have been designed to meet all current Maine Department of Environmental Protection (Maine DEP) Chapter 500 regulations and feature deep sump catch basins, sediment forebays and wet ponds. Included in this submittal is a Drainage Narrative for the project.

A Maine DEP Site Location of Development Permit Application (SLODA) and a Maine DOT Traffic Movement Permit (TMP) will be submitted concurrently with the Town of Kittery Site Review process. The SLODA will include all stormwater and wetland permitting. Wetland permitting is required for the vernal pool and stream buffer impacts as well as the wetland crossing for the road. Traffic information is not included in this submission and will be sent once Hoyle, Tanner has met with DOT for a scoping meeting. The Town will be copied on all correspondence with Maine DEP and DOT.

Offsite utility infrastructure will be constructed to support the proposed development. Water, gas, electrical and telecommunication lines will be extended from Ranger Drive to the north along Dennett Road to serve the site. Existing sewer is located at the rear of the property. Hoyle, Tanner has met with the Kittery Water District and Kittery Sewer Department to confirm they both have adequate capacity for a project of this size.

Sincerely,
HOYLE, TANNER \& ASSOCIATES, INC.

Shawn M. Tobey, P.E.
Project Manager

TOWN OF KITTERY, MAINE TOWN PLANNING AND DEVELOPMENT DEPARTMENT

200 Rogers Road, Kittery, Maine 03904
Phone: (207) 475-1323-FAX: (207) 439-6806
www.kittery.org

APPLICATION: SITE PLAN REVIEW

Existing Use: The site is mostly wooded with a gravel access road. There is a small gravel lot that is used as a lay down area for large materials.

NOILdIYJSEA 1 J3FOYd

Project Name: \quad Proposed Mixed-Use Residential Development Project

Proposed Use: The applicant, Aztec, LLC, is proposing to construct a four (4) story mixed-use residential building with 3,000 S.F. of mercantile space along Dennett Road, two (2) residential buildings each four (4) stories at the rear of the site, an amenity building, and five (5) covered parking structures. The residential buildings will have a mix of studio, one bedroom and two bedroom units total of 303 dwelling units. The design also includes the construction of a new private roadway, parking lots totaling 401 spaces, landscaping, sidewalks, pool, outdoor amenity space, nature trail, supporting utilities, and drainage infrastructure to support the development.

WAIVER REQUEST

Related Kittery Land Use Code concerning waivers and modifications:

16.10.8.2.5 Conditions or Waivers.

Conditions required by the Planning Board at the final plan review phase must have been met before the final plan may be given final approval unless so specified in the condition or specifically waived, upon written request by the applicant, by formal Planning Board action wherein the character and extent of such waivers which may have been requested are such that they may be waived without jeopardy to the public health, safety and general welfare.
16.7.4.1 Objectives Met. In granting modifications or waivers, the Planning Board must require such conditions as will, in its judgment, substantially meet the objectives of the requirements so waived or modified.

I certify that, to the best of my knowledge, the information provided in this application is true and correct and will not deviate from the plans submitted without notifying the Kittery Planning Department of any changes.

Applicant's Signature: Date:

Owner's Signature: Date:

COMPLETED BY OFFICE STAFF

ASA CHARGE	AMOUNT	ASACHARGE	AMOUNT
REVIEW		SERVICES	
LEGAL FEES (TBD)		RECORDER	\$35
ENGINEERS REVIEW (TBD)		Fact Finding (TBD)	
ABUTTER NOTICES		$3{ }^{\text {RD }}$ PARTY INSPECTIONS (${ }^{\text {a }}$	
Postage	\$20	Other Professional Services	\$50
LEGAL NOTICES		PERSONNEL	
ADVERTISING	\$300	SALARY CHARGES IN EXCESS OF 20 HOURS	
SUPPLIES			
OfFICE	\$5		
SUB TOTAL		SUB TOTAL	
		TOTAL ASA REVIEW FEES	

PROPOSED MIXED-USE RESIDENTIAL DEVELOPMENT PROJECT

76 DENNETT ROAD
KITTERY, ME 03904
APPLICANT
AZTEC, LLC
62 PORTLAND ROAD, SUITE 25 KENNEBUNK, ME 04043

DATE: JUNE 20, 2019

ISSUED FOR PLANNING BOARD REVIEW NOT FOR CONSTRUCTION

FIRE DEPARTMENT:	SEWER SERVICE:
KITTERY FIRE DEPARTMENT 3 GORGES ROAD CONTACT: DAVID O'BRIEN (207) 439-2262	KITTERY SEWER DEPTARTMEN 18 DENNET ROAD ROAD KITTERY, ME 03904 CONTACT: TIM BABKIRK (207) 439-4646

$\frac{\text { TELECOMMUNICATIONS: }}{\text { FAIRPOINT COMMUNICATIONS }}$

$\underset{\substack{\text { ONTACT: JoE Consiln } \\(603) 427-525}}{\text { Cit }}$

neral notes

Werten omenion have prederce ove scaled dmenions.

 EGITERED LANO SURVEYOR AT NO EXXEENSE TO THE OMMER

THE CONTRACTOR IS RESPONSILEL FOR THE MEANS AND METHOD OF
CONSTRUCTIN ANO FOR THE CONOIONS OF THE SIE.

 PERMSSOM
 8. THE CONTRACTOR IS RSSONSIEL FOR ALL PREMTST FESS

此
20. Cooronati All work Adacent to the proposed buloncs wth

24. THERE Shall ee no onste salt storage

 MHN COMEETNG NEW PRESS TO ExSTING STRUCTURES SUCH AS

9. THE Contracto shal dien Th Evir sior Mure sysem of
 the dran lne if 3 Cove ALL Proposeso catch basns shall be deep sump catch basns
mTH
 AT A MNNUM IN THE SPRNG AND FALL.

ARTHWORK \& GRADING NOTES

Grade Anay from bullong walls at 2% minmum (ttrical). PROVDE

ELEVANTINS. | Spot grades shown ARe Pavement flevatons at The curbune |
| :--- |
| UNESSS OHERMSE No |

9. FIL OR TOSSOL SHAL NETHER EE PLACED NOR COMPACTEO WHIL
10. FNISH PAVEMENT SURFACES AND LAWW AREAS SHALL BE RREE OO

EXTERIOR LIGHTS:

all proposed lighticg shall be dark sky frenolu

ALL ON-SITE UTLITES SHaLL EE UNDERGROUN.
19. Backelow prevenors shall be provioe for both fire and
20. ConTRactor to coorgnate unorgrouno elecric, Noull

CONSTRUCTION SEQUENCE:

 euve and dispose of ExSting vegetaton as show
 blast and remove leode as requred for buliong and ututites. Construct the bullong footngs, foundation walls and place
Backilu.
 Nstall all oranage, water, sewer, electric, telecom and gas
 construct the bulongs.
. Place raanay selegts ano install ennoer paung course. 12. NSTALLL LANNOSCAPE PLIANTNGS

- nstall finsh pavenent, pavement marknos and signage.

EFERENCE PLA

XISTING CONDITIONS NOTE

WetLands, vernal pool \& stream notes

PER RTEERY REUUTONS, THE WER ANDS ANO VERNAL Pood WEEE

3. ZONNG FOR THE PARCELS IS MXED USE - NEGGHBORHood Mu-N

CERTIFICATION

SITE NOTES
er to ing cz for notes, abbeevatons and legeno.

parking calculations
,

3. MLTTUNT RESDENTAL - STUOIO/1 EEDROOM

$$
=263 \text { SPACES }
$$

$$
263 \text { UNTTS } \times 1=263 \text { SPACEE }
$$

+ Guest Space/4 dweling unts Project total

vernal pool buffer calculations

 INCLUOES 24,535 S.F. of BuFfer Restoraton

$\xrightarrow{\text { SITE DATA }}$

2. Lot/OWNER NFFRM

-

5. Total upland area:
6. Dotat wertand ancal
8. developeo area:
106.467 S S.F. ($23.33 \pm$ AC.)

716,997士 S.F. (16.46士 AC.)

 ${ }^{\text {REAR }} 201$ 287 SPACES TOTAL $=5+7=12$ SPACES REGO
1 PER 6 OF TOTAL. $12 / 6=2$ REQ'O

Land area per dwelling unit calcs

 MNMUM LAND AAE PRR DWELING UIT

resiontin

REEER To DwGs Cl9-C25 For constructon DEtalls

HOUSEKEEPING NOTES

A. OISCHARGES FROM FiRFFIGHTNG Actuvt;

D. OUST Control Runoff AN Accordance mTH Perwi conoltons

c. UNCONTAMMATEE AR CONOITONNG OR COMPRESSOR CONDENSATE

Unconntannated grounowater or spring water
FOONDATON OR FOOTER DRAN-WATER WHERE FLLWS ARE NOT

potable water sources neluong watrrine fushings; and Lanoscape rrigatoo.

 OLOMNE:

B. FEELS OLS OR OHER ROLLUTANTS UED D NEHICLE AND
c. SoAps. Solveris, or detreent used in vehle ano

3. ADODITOUAL- REOUMREENTS ADOITONAL REQUREMENTS MAY EE APPLED

GRADING a drainage notes

REEER TO DWOS C19-C25 For constructon detalls
4. CONSTRUC TON SHALL MEET ALL CONOITONS OF THE MAIE DEP SII

ALl DRAMAGE STTUCTURES HANE AN NTERNAL DIAMETER of 4^{4-0}

7. THEL LOOATON OF PROPOSED DULDINE ENTRANEES ARE APPROXMATE ANO
8. ACCESSSILE PARKNG STALLS HAVE SLOPES LESS THAN 2% in ALL

10. Refer to dranage narative for test pit locs and detalled wet

WETPOND NOTE

wet pond 1 dAta:

UTILITY NOTES

- reger to ores hates, abreviatona and leg
 Propose ututr omers on istallation locatoin Ani

5. THE BuLING SEMER SERYCE PRE SIES SHOWN ON THESE PLANS ARE

 THE CONTTRACTOR Shall cooronnate all gas intallaton work w

Uublic rows.
STABllze.

 HHER NON-EROOOBEE COVER. STABILIEE AREAS MTHN 75 FEET OF

 stabluze

B. PERMNENT MLCH- FOR MULCHED AREAS RERMNENT MUCHING

 RECOMMENOD THAT ANGULAR STONE BE USED.
D. Achicuitural use for constructon project on lano

STAAIIIZA
ABOVE

 8. MHEN THE WATESHED DRANM TO A ITCH HR SNALE IS LESS
 S.

dos grave

 TALLWA ER DEPTH.

ADOTIONA REDUIREMENTS ADOOTTONAL REQUIREMENTS MAY BE APPLED

END VEW
Spacing of fence posts not to exceed 10-0".

overap by G^{0}. fold ano staple adoonng sectons of flter fabric

(cios SILT FENCE EROSION CONTROL DETAIL

SLOPE PROTECTION INSTALLATION NOTES:

 Nstall proouct in accopaance wth wanufacturer's specificatons.
(219 SLOPE PROTECTION EROSION CONTROL MATTING DETAIL

NLET PROTECTION NOTES:

3. Inspect seoment flitre bac wekit and after every ranfall even
(3) INLET PROTECTION DETALL

NOTES:
CRITCAL PINTS

 Channel installation notes:
stan raput wact

 Coupacter sol wh A Row of

$\frac{4}{4}$ CHANNEL EROSION CONTROL MATTING DETALL

5. A MIMMUM SEPARATON OF ONE (1) Foot

			$\begin{gathered} \text { PERMANENT } \\ \text { POOL } \\ \text { VOLUME } \end{gathered}$	$\begin{aligned} & \text { CHANNEL } \\ & \text { PROTECTION } \\ & \text { ELEV. C } \end{aligned}$	$\begin{gathered} \text { CHANNEL } \\ \text { PROTECTION } \end{gathered}$			¢icku
	46.0	53.3	18,313 C.F.	54	7.507 C.F.	55.8	5.85	11
2	45.0	52.5	12,96 C.F.	53.3	5,590 c.F.	54.84	54.85	56.0
3	44.0	49.5	8,209 C.F.	50.6	13,516 c.F.	52.43	${ }_{52.43}$	53.75

(121) WET POND CROSS SECTION

section on centerline

$\begin{array}{\|l\|l} \hline \text { DAAMEIER } \\ \text { INCHES } \end{array}$						HeADER	\|iticher		
	0.186	0.61		3^{3-2}	0.789	$3^{3-66^{\prime \prime}}$	$3^{3-66^{\prime \prime}}$	$0^{\circ}-10^{\circ}$	$0^{-1022^{\prime \prime}}$
15 18	0.202	${ }_{0}^{0.85}$	$\stackrel{11}{14}$	-$3-10$ $5-2$	0.947	${ }_{\text {- }}^{4-6}$	3-9	${ }_{1}^{1-1}$	$\frac{1-11 / 4}{\substack{1-1}}$
18 18 18	0.222 0.260	${ }_{1}^{1.178}$	20	-	${ }_{\text {l }}^{1.411}$	${ }^{5-6}$	+4-0	${ }^{1-4} 1$	$\frac{2-0}{2-1 / 2}$
30	0.301	2.58	25	${ }^{9-2}$	1.810	${ }^{9-6}$	5-0	${ }^{2-4}$	
36	0.344	3.53	31		2.87	${ }^{11-6}$	5-6		

4. CONCRETE OR MORTAR RUBBLE HEADWALL DETAILS

$\begin{array}{cc}6 & \text { ANTI-SEEP DRAIN COLLAR DETAIL } \\ \text { (C21) } & \text { SCALE: NONE }\end{array}$
Proposed founoation
SEE STRUCTURAL
RRAWMSS

$\underset{\substack{\text { Mer } \\ \text { PONO }}}{ }$					RIP-RAP THICKNESS
1	55.85	57.1	30	$6^{\prime \prime}$	${ }_{121}{ }^{12}$
${ }_{3}$	${ }_{5}^{54.85}$	56.0	$\begin{array}{r}30 \\ 55 \\ \hline\end{array}$	${ }_{\text {\% }}{ }^{\text {c\| }}$	${ }_{12}{ }^{2}$
3	52.45	53.75	55	${ }^{8 \prime}$	${ }_{16^{\prime \prime}}$

(5) Emergency spillway detall

SECTION
OUTLET STRUCTURE NOTES:
ALL CEMENT CONCRETE TO EE 4,000 PSI (MN.).
Gallanized steel orate shall be bolted to top of structure
,

${ }_{\text {Wer }}^{\text {weNo }}$	cincoun					$\begin{aligned} & \text { OUREE pipe } \\ & \text { NTVOUT } \\ & \text { D } \end{aligned}$	
	50.7	1.11 so. w .	54.4		55.7	50.6	
	49.8	0.76 Sa. in.	53.3	$5^{\prime \prime}$	54.7		
	46.6	1.9 so. N .	50.6	$\times 16$	52.25		

(921) OUTLET STRUCTURE AT DETENTION POND C21) SCALE: NoNE

(c) SEWER TRENCH DETAIL

wall sleeve detall

LOCK-JONT FLEXBLLE MANHOLE SLEEVE

BIUMASTC

Horrzontal Lonts berwen secions of preait concerie

note:

SHELF NOTES:

 $12^{12 \mathrm{Mn}}$.

SECTION A-A
(422) STANDARD SANITARY SEWER BRICK INVERT DETAIL
(5 (22) INLET DROP SEWER MANHOLE DETAIL

WATER CROSSING UNDER SEWER

CROSSING NOTES:

1. SEE PLan ano profile for crossing locations

(62) WATERSEWER PIPE CROSSING DETAIL

anvert detal at side orops

InLET OROP MANHOLE NOTES:

5. ANCOR STRAPA AND BuLs To 日E

- 3000 PSI CoNCRER

encasement notes

(125 TYPICAL ACCESS DRIVE SECTION

3. Coontactor shall cooronate mit guaborl Manuacturer.
(2) TYPICAL MSE GRAVITY BLOCK RETAINING WALL SECTION

(325) EXPANSION JOINT DETAIL
(625) TYPICAL JOINTS FOR CONCRETE WALKWAY DETAIL

BUILDING 1
25 STUDIO (S) 650 SF AVG
28 1-BED
11 2-BED (A) 900 SF AVG

64 UNITS TOTAL

BUILDING 1 TYPICAL UPPER FLOORS 2-4

BUILDING 1 GROUND FLOOR

150 UNITS TOTAL

BUILDING 2 TYPICAL UPPER FLOORS 2-4

BUILDING 2 GROUND FLOOR
\uparrow

BUILDING 3

昭 \＃昭险
 田田丑田田田田田日井田田四凅田田田四㽗 H．A

	H．	时	
－	\＃\＃	欥田日曲	
时	－\＃	明田日	
	H1	相团	

田昍	目时罒日
田昍	日时 \＃\＃
田昍	日

DRAINAGE NARRATIVE

FOR A
PROPOSED MIXED-USE RESIDENTIAL DEVELOPMENT PROJECT

76 Dennett Road Kittery, ME

Revised: June 20, 2019
Prepared for:
Aztec, LLC
62 Portland Road, Suite 25
Kennebunk, ME 04043

TABLE OF CONTENTS

DESCRIPTION PAGE
PROJECT INTRODUCTION 1
SITE DESCRIPTION 1
HYDROLOGIC ANALYSIS 2
PRE-DEVELOPMENT CONDITIONS 2
POST-DEVELOPMENT CONDITIONS 4
EFFECTIVE POLLUTANT TREATMENT 6
PERMANENT POOL ANALYSIS 6
CHANNEL PROTECTION ANALYSIS 7
STORMWATER COOLING ANALYSIS 7
EMERGENCY SPILLWAY ANALYSIS 8
FLOOD CONTROL ANALYSIS 8
CONCLUSION 9
APPENDICESAPPENDIX A: NOAA RAINFALL DATAAPPENDIX B: FEMA FIRM MAPAPPENDIX C: NRCS SOIL REPORT AND MAPAPPENDIX D: HIGH INTENSITY SOIL SURVEY AND MAPAPPENDIX E: WET POND DESIGN CALCULATIONS
APPENDIX F: RIP-RAP DESIGN CALCULATIONS
APPENDIX G: INSPECTION AND MAINTENANCE MANUAL
APPENDIX H: PRE- AND POST-DEVELOPMENT WATERSHED ANALYSIS
APPENDIX I: PRE- AND POST-DEVELOPMENT WATERSHED PLANS
APPENDIX J: EFFECTIVE TREATMENT CALCULATIONS

This Drainage Narrative has been prepared to demonstrate compliance with the Maine Department of Environmental Protection (MEDEP) Stormwater Site Location of Developmental Law.

PROJECT DESCRIPTION

The Applicant, Aztec, LLC, is proposing to develop a parcel of land located at 76 Dennett Road in Kittery, Maine (the "Site"). The Site currently consists of a mostly wooded lot with a gravel access road, scattered wetlands, a vernal pool and a small stream. The Applicant proposes to develop the Site in order to construct four (4) residential buildings, five (5) covered parking buildings and one (1) amenity building for the residents. As proposed, the project includes the construction of nine (9) new buildings, a new roadway, parking lots, landscaping, sidewalks, supporting utilities, and drainage infrastructure to support the development.

SITE DESCRIPTION

The Site is a $23.3 \pm$-acre parcel of land located at 76 Dennett Road in Kittery, Maine. The Site itself is comprised of three different lots, Lot 15B and 16A from Tax Map 6 and Lot 4 from Tax Map 13. The parcel is also located in the Mixed Use-Neighborhood (MU-N) zone of Kittery, Maine. The Site is bounded to the west by Dennett Road, the Maine Turnpike (Interstate Route 95) to the south, and private property to the north and east. See attached Vicinity Map.

The drainage design utilizes the existing hydrologic and hydraulic patterns, minimizes impacts to surrounding areas, and uses Maine's Best Management Practices (BMP's) to provide effective pollutant removal, stormwater cooling, channel protection and flood control.
This drainage study includes summaries and calculations for the effective pollutant removal, stormwater cooling, channel protection, and flood control for pre-development and postdevelopment peak runoff rates for the proposed site development.

The Site is not located within a flood hazard area as determined from the Kittery GIS and the Flood Insurance Rate Maps (FIRM) for York County, City of Kittery, Maine. The maps are prepared by the Federal Emergency Management Agency (FEMA), (Map numbers 2301710007C \& 2301710004C, dated July 5 ,1984) See Appendix B for FEMA FIRM Maps.

Existing topography ranges from an elevation of 66 feet in the northern part of the Site and an elevation of 68 feet in the eastern part of the Site to an elevation of 50 feet to the south and west of the site. The slopes to the south and east are sloped away from the interior of the Site and down towards the Maine Turnpike; the southern and eastern boundary. The interior portion of the site is mostly flat with the slopes being graded to the south. Along the perimeter of the western portion of the Site, the slopes are graded slightly upward to meet Dennett Road.

Based on the available information of the Site and field observations, there are three main areas where wetlands exist. The main portion of wetlands is located in the northern part of the Site, while minor portions of wetlands lay to the southeast and northwest portions of the Site. A vernal pool is located close to the center of the Site, which is within the main portion of wetlands. There is also a stream that lies along the southeastern border of the Site. The proposed development does not interfere with the boundaries of the wetlands and does not reduce the size of the wetlands in any way.

Joseph Noel prepared a Class A, High Intensity Soil Survey (HISS) of the Site. The report includes logs of 21 test pits that were dug to verify the subsurface conditions of the site, the test pits were dug on May 19, 2019 and May 27, 2019 and the locations were located by Hoyle, Tanner \& Associates, Inc. on May 29, 2019. See Appendix D for the HISS report and the Test Pit logs.

Based on the HISS survey, a Hydrologic Soil Grouping of D was used for the majority of the Site and a small pocket of C soil was used in the eastern portion of the Site.

HYDROLOGIC ANALYSIS

The runoff analysis is based on Maine DEP regulations and analyzes the 2, 10, and 25-year design storms using the SCS TR-55 method with Type-III, 24-hour storms. The rainfall data that was used to model the storm events was obtained from the National Oceanic and Atmospheric Administration's (NOAA) website. A summary of the rainfall events is shown in the table below. The full table of results is located in Appendix A. A link to NOAA's website is provided below: http://hdsc.nws.noaa.gov/hdsc/pfds/pfds map cont.html?bkmrk=me

STORM EVENT	24-HOUR RAINFALL (Inches)
1-Year Storm	2.64
2-Year Storm	3.31
10-Year Storm	5.32
25-Year Storm	6.58
100-Year Storm	8.52

The hydrologic analysis was performed using the HydroCAD computer program. The HydroCAD model is based on the National Resources Conservation Service (NRCS) Technical Release 20 (TR-20) Model for Project Formulation Hydrology. The model begins with a rainfall depth uniformly imposed on the watershed over a specified time distribution, 24 hours in this analysis. The rainfall depth is then converted to a volume of runoff by using a Runoff Curve Number (CN). The determination of the CN is based on assessments of soil characteristics, vegetation type and condition, amount of impervious areas, interception and surface storage. The calculated runoff is then transformed into a hydrograph by using unit hydrograph theory and routing procedures that depend on runoff travel time through each sub-watershed.

The overall site pre-development and post-development hydrographs were calculated utilizing the method detailed in Technical Release 55 (TR-55) "Urban Hydrology for Small Watersheds" as published by the United States Department of Agriculture Soil Conservation Service, "SCS", and revised in June of 1986.

PRE-DEVELOPMENT CONDITIONS

To effectively analyze the pre-development and post-development conditions for the project, a series of five design points were established at critical stormwater runoff locations on the site. The areas draining to each design point were broken down into single or multiple subcatchments, depending on size and drainage patterns. See Appendix I: Pre-Development

Watershed Area Plans for the location of each design point and watershed. A summary for each design point and associated watershed are described below.

Design Point 1 (DP1) is located along the northwestern corner of the property. The proposed area draining to this design point is 5.7 acres. Most of this area is comprised of woods, wooded wetlands, and a gravel access road. The watershed is mostly flat with slopes between 1% and 4%. Stormwater sheet flows through the existing woods into the wetlands and ultimately reaches an existing 24 -inch reinforced concrete pipe in the western corner of the site.

Design Point 2 (DP2) is located at the southwestern corner of the property which drains into an 18 -inch reinforced concrete pipe that then leaves the site and goes under Dennett Road. The watershed extends north until it reaches the existing gravel road. The watershed is relatively flat with some steep roadside ditches near Dennett Road. Slopes are between 1% to 9%, with the steeper slopes representing the slopes closest to the ditches. Stormwater sheet flows from the southeast corner of the area to the west of the subcatchment and enters the 18-inch reinforced concrete pipe.

Design Point 3 (DP3) is located on the southern side of the property abutting Interstate Route 95. The watershed is the area that occupies a large portion of the site and is the largest at approximately 17.9 Acres. The watershed is split into two areas, 3 A and 3 B , along the northern side of the gravel road. The northern half, watershed $3 A$, of the watershed has slopes between 1% to 8%. This area sheet flows through forest and forested wetlands from the north to the south until reaching a stone headwall with a 24 -inch culvert, which leads to the other half of the watershed. The southern half of the watershed, watershed $3 B$, has slopes ranging from 1% to 4%. Stormwater sheet flows from the west over the gravel access road, through forested wetlands until reaching a small stream in the southeastern corner of the property where the stormwater leaves the property.

Design Point 4 (DP4) is located in part of the northeast corner of the property. The watershed is mostly comprised of forested land but has a small portion of the gravel access road running through the southern border of the watershed. Stormwater sheet flows down the slope, to the north off of the site.

Design Point 5 (DP5) is located on the eastern border of the property. The watershed is mostly comprised of forest with the gravel access road entering from the western end of the watershed and leaving in the southern part of the watershed. The watershed is sloped from west to east with slopes between 1% to nearly 9%. Stormwater sheet flows down the slope to the northeast where it exits the property.

The analysis criteria used for the SCS TR-20 hydraulic analysis of the pre-development conditions are as follows:

- Storm Event Frequency: 2, 10, and 25-year, 24-Hour Storms
- Runoff Coefficients (CN)

Gravel Road, HSG D	$=91$
Gravel Road, HSG C	$=89$
Woods, Good, HSG D	$=77$
Brush, Good HSG D	$=73$
Woods, Good, HSG C	$=70$
Brush, Good HSG C	$=65$

The complete HydroCAD analysis for the pre-development conditions can be seen in Appendix H of the study. The table below provides a summary of the peak runoff rates for each design point in the pre-development conditions.

PRE-DEVELOPMENT CONDITIONS					
	Design Point 1	Design Point 2	Design Point 3	Design Point 4	Design Point 5
Inflow Area	5.70 Acres	0.66 Acres	17.96 Acres	0.31 Acres	2.10 Acres
2-Year Peak Flow	7.61 cfs	1.23 cfs	13.69 cfs	0.40 cfs	2.11 cfs
$10-$ Year Peak Flow	16.10 cfs	2.53 cfs	30.41 cfs	0.95 cfs	5.37 cfs
25-Year Peak Flow	21.62 cfs	3.36 cfs	43.93 cfs	1.33 cfs	7.61 cfs

POST-DEVELOPMENT CONDITIONS NARRATIVE

The proposed development was designed to discharge at the same five design points as in the pre-development conditions. The Post-Development Drainage Area Plan can be seen in Appendix I. A summary for each design point and associated watershed are described below.

Design Point 1 (DP1) receives stormwater runoff from proposed parking, grass, existing wooded areas, driveways, grassed islands, sidewalks, proposed buildings, and wet pond 1; all within the different subcatchments preceded with the number one (1). This includes subcatchments 1A through 1M. Runoff from impervious surfaces is directed to deep sump catch basins for pre-treatment before being discharged through two sediment forebays into the proposed wet pond. The pond's outlet control structure is a square 4-foot x 4 -foot inside diameter concrete structure with a slotted 6-inch PVC gravel trench underdrain as the primary channel protection volume outlet. The outlet structure conveys stormwater through a 24 -inch HDPE pipe onto to a riprap level spreader causing the stormwater to sheet flow to DP1, an existing 24-inch reinforced concrete pipe, and meet the redistribution of stormwater discharges standard.

Design Point 2 (DP2) contains proposed grass and an existing wooded patch on the southern side of the lot. Stormwater sheet flows off-site through grass and woods before entering an existing 18 -inch reinforced concrete pipe that leaves the site and travels under Dennett Road. This watershed was slightly reduced in size and contains no impervious surfaces; therefore, peak runoff control is not necessary to meet existing flow rates.

Design Point 3 (DP3) receives stormwater runoff from proposed parking, grass, existing wooded areas, driveways, grassed islands, sidewalks, proposed buildings, and wet ponds 2 and 3; all within the different subcatchments preceded with the number three (3). This includes subcatchments 3A through 3II. This is the largest watershed in the post-development conditions and accounts for a majority of the stormwater runoff from the proposed development. Runoff from impervious surfaces is directed to deep sump catch basins for pre-treatment before being discharged through sediment forebays into the proposed wet ponds. Both ponds' outlet control structures are a square 4 -foot $\times 4$-foot inside diameter concrete structure with a slotted 6 -inch PVC gravel trench underdrain as the primary channel protection volume outlet. The outlet structure for wet pond 2 conveys stormwater through a 24 -inch HDPE pipe that conveys the
flow through two manholes and then is redistributed onto a riprap level spreader causing the stormwater to sheet flow to the existing stream to DP3 and meet the redistribution of stormwater discharges standard. The outlet structure for wet pond 3 conveys stormwater through a 36 -inch HDPE pipe onto to a riprap level spreader causing the stormwater to sheet flow to the existing stream to DP3 and meet the redistribution of stormwater discharges standard.

Design Point 4 (DP4) contains proposed grass and a reduced existing wooded patch on the northern corner of the lot. Stormwater sheet flows off-site through grass and woods. This watershed contains no impervious surfaces and was reduced in size, therefore peak runoff control is not necessary to meet existing flow rates.

Design Point 5 (DP5) contains proposed grass and a reduced existing wooded patch on the northern corner of the lot. Stormwater sheet flows off-site through grass and woods. This watershed contains no impervious surfaces and was reduced in size, therefore peak runoff control is not necessary to meet existing flow rates.

The analysis criteria used for the SCS TR-20 hydraulic analysis of the post-development conditions are as follows:

- Storm Event Frequency: 2, 10, and 25-year, 24-Hour Storms
- Runoff Coefficients (CN)

Paved Parking, HSG C	$=98$
Paved Parking, HSG D	$=98$
Water Surface, HSG C	$=98$
Water Surface, HSG D	$=98$
Roofs, HSG C	$=98$
Roofs, HSG D	$=98$
Gravel roads, HSG D	$=91$
$50-75 \%$ Grass Cover, Fair, HSG D	$=84$
$50-75 \%$ Grass Cover, Fair, HSG C	$=79$
Meadow, non-grazed, HSG D	$=77$
Woods, Good, HSG C	$=70$

The complete HydroCAD analysis for the post-development conditions can be seen in Appendix H of the study. The table below provides a summary of the peak runoff rates for each design point in the post-development conditions.

POST-DEVELOPMENT CONDITIONS						
	Design Point 1	Design Point 2	Design Point 3	Design Point 4	Design Point 5	
Inflow Area	6.31 Acres	0.63 Acres	19.3 Acres	0.04 Acres	0.43 Acres	
$2-Y e a r ~$ Peak Flow	5.77 cfs	0.96 cfs	12.39 cfs	0.05 cfs	0.52 cfs	
$10-$ Year Peak Flow	14.04 cfs	2.05 cfs	29.86 cfs	0.12 cfs	1.22 cfs	
25-Year Peak Flow	21.23 cfs	2.77 cfs	43.56 cfs	0.17 cfs	1.69 cfs	

The proposed development has been designed to provide effective pollutant removal, stormwater cooling, channel protection and flood control. During construction, it is essential to provide Temporary Erosion Control as needed throughout the site. Temporary erosion control measures and their locations are shown on the enclosed Grading, Drainage and Erosion Control Plan and Detail Drawings, and will be included in the construction plans for implementation.

EFFECTIVE POLLUTANT TREATMENT

To provide effective pollutant removal, the proposed development will use the Maine Department of Environmental Protection (MEDEP) approved Best Management Practices (BMPs) to provide stormwater treatment from impervious surfaces. The BMP chosen to provide treatment from stormwater runoff is a wet pond. The stormwater runoff from the proposed buildings, sidewalks, roadways, parking areas, and all other developed portions of land will be collected and conveyed in a series of deep sump catch basins to one of the three proposed wet ponds on the Site. Wet ponds have a permanent pool of water and have a capacity to temporarily store runoff until it can be released at a rate that is not harmful to the receiving water. Wet ponds can achieve high rates of removal or urban pollutants, such as sediments, trace metals, hydrocarbons, and other nutrients. Per Maine's Stormwater Management Law, the management system has to provide treatment of no less than 95% of the impervious area and no less than 80% of the developed area. Below is a table that outlines what is the expected treatment rates of the wet ponds designed.

Treatment Summary	
Total Impervious Area Treated (Sq.Ft.)	290,870
Total Impervious Area (Sq.Ft.)	293,315
Impervious Treatment \% = Total Imp. Area Treated / Total Imp. Area	99%
Total Developed Treated Area (Sq.Ft.)	384,605
Total Developed Area (Sq.Ft.)	426,490
Developed Treatment \% = Total Dev. Area Treated / Total Dev. Area	90%

From the table it can be observed that the wet ponds will have the required treatment level; 99\% of the impervious area will be treated and 90% of the developed area will be treated. Full calculations of treated and existing areas can be found in Appendix J.

PERMANENT POOL ANALYSIS

The wet pond's permanent pool volume was calculated using Chapter 4 of the Maine Stormwater Best Management Practices Manual. The wet pond has a permanent pool of water so that when stormwater runoff enters the pool, the pollutants do not immediately leave the system. The permanent pool also helps to cool stormwater runoff before it is discharged out into a stream or other body of water. Adding pollutants or warmer water to a receiving body of water is strictly against the Maine Department of Environmental Protection's Stormwater Management Law. The table below summarizes the calculations performed to appropriately size the permanent pool by the Maine Stormwater BMP Manual.

Wet Pond Permanent Pool Volumes		
	Volume Required	Volume Provided
Pond 1	$13,379 \mathrm{Ft} .{ }^{3}$	$18,313 \mathrm{Ft}{ }^{3}$
Pond 2	$9,418 \mathrm{Ft}^{3}$	$12,916 \mathrm{Ft}{ }^{3}$
Pond 3	$26,451 \mathrm{Ft.}^{3}$	$29,209 \mathrm{Ft.}^{3}$

Full calculations are shown in Appendix E.

CHANNEL PROTECTION ANALYSIS

The MEDEP requires channel protection before discharging within the watershed of a river, stream, or brook to avoid destabilization and sedimentation of stream channels, downstream receiving waters and wetlands. The channel protection volume is the volume that is designed to temporarily store stormwater runoff from the 2 , 10 , and 25 -year, 24 -hour post-development storm peak flow rates. The excess storage volume allows for the new stormwater runoff to be released at a controlled rate that does not destabilize the sediment of the stream channel, or the receiving water or wetland. The channel protection volume was calculated using Chapter 4 in the Maine Stormwater BMP Manual.

Wet Pond Channel Protection Volumes		
	Volume Required	Volume Provided
Pond 1	$6,689 ~ F t$.	
Pond 2	$4,709 \mathrm{Ft.}^{3}$	$7,507 \mathrm{Ft} .^{3}$
Pond 3	$13,225 \mathrm{Ft.}^{3}$	$5,590 \mathrm{Ft} .{ }^{3}$

Full calculations are shown in Appendix E.

STORMWATER COOLING ANALYSIS

The MEDEP requires the effective cooling of stormwater to 60° Farenheit, before being discharged within the watershed of a river, stream, or brook to protect aquatic life. The stormwater would flow into one of the wet ponds where it would remain in the permanent pool or in the channel protection volume until it is drained within 48 hours. An underdrained gravel trench is provided in the bench area around the permanent pool. The underdrain ensures that water is drained at a controlled rate and is sized so that effective cooling can be reached before the water is discharged. The rate at which water is to be discharged from the pond is a period of 24-48 hours. According to the BMP Manual, to have the desired effect the underdrain pipe should be 6 -inches in diameter. A 6 -inch pipe was used with a gate valve to restrict the flow of water at the desired rate of discharge. The required underdrain length, the provided length, and the drainage time is summarized in the table below. Each value was calculated using Chapter 4 in the Maine Stormwater BMP Manual.

Stormwater Cooling Summary					
	Underdrain Required Length	Underdrain Provided Length	Required Drain Time	Provided Drain Time	
Pond 1	23 Ft.	30 Ft.	$24-48$ Hrs.	29.8 Hrs.	
Pond 2	17 Ft.	30 Ft.	$24-48$ Hrs.	31.1 Hrs.	
Pond 3	$41 \mathrm{Ft}$.	$50 \mathrm{Ft}$.	$24-48$ Hrs.	31.3 Hrs.	

Full calculations are shown in the Appendix E.

EMERGENCY SPILLWAY ANALYSIS

The emergency spillway of the wet pond was designed to convey the 25 -year, 24 -hour storm while maintaining at least one foot of freeboard between the top of the embankment crest, assuming that the outlet control structures (OCS) was not functioning. It will also safely convey the 100-year storm without overtopping the embankment. The design flow depth of the spillway was designed not to exceed one-half of the D_{50} stone size. The location for each of the spillways are shown in the Drainage Plans.

	Emergency Spillway Design								
	Peak Elevation $25-\mathrm{Yr}$ storm	Elevation of Spillway	Spillway Width	Peak Spillway Elevation $25-\mathrm{Yr}$ storm without OCS	Peak Spillway Elevation $100-\mathrm{Yr}$ storm without OCS	Top of Berm	Freeboard $25-\mathrm{Yr}$ Storm	Flow Depth $25-\mathrm{Yr}$ Strom	Riprap Size
$\begin{gathered} \text { Pond } \\ 1 \\ \hline \end{gathered}$	55.82 Ft .	55.85 Ft .	30 Ft .	56.1 Ft .	56.2 Ft.	57.1 Ft .	1.0 Ft .	3.0 ln .	6 ln .
$\begin{gathered} \text { Pond } \\ 2 \\ \hline \end{gathered}$	54.84 Ft .	54.85 Ft .	30 Ft .	55.0 Ft.	55.1 Ft .	56.0 Ft.	1.0 Ft .	3.0 ln .	6 ln .
$\begin{gathered} \text { Pond } \\ 3 \end{gathered}$	52.43 Ft .	52.45 Ft .	55 Ft .	52.73 Ft .	52.85 Ft .	53.75 Ft .	1.0 Ft.	3.6 ln .	8 ln.

FLOOD CONTROL ANALYSIS

The proposed site design reduces peak flow rates leaving the site for the 2, 10, and 25-year storm events. The proposed site design reduces the discharge of runoff to a wetland in the 2year storm. This is accomplished by having a channel protection volume that can retain the runoff while the outlet control structures release the stored runoff at a controlled rate. Having a controlled rate of outflow will reduce the amount of runoff discharge into the wetlands which will reduce the mean storage depth in the wetlands. The tables below outline the reductions for each storm event at each of the five design points.

Design Point 1				
$24-$ Hour Storm	Pre-Development Peak Flow Rate	Post-Development Peak Flow Rate	Reduction	
$2-$ Year	7.61 cfs	5.77 cfs	-1.84 cfs	
$10-$ Year	16.10 cfs	14.04 cfs	-2.06 cfs	
$25-$ Year	21.62 cfs	21.23 cfs	-0.39 cfs	

Design Point 2				
$24-$ Hour Storm	Pre-Development Peak Flow Rate	Post-Development Peak Flow Rate	Reduction	
$2-$ Year	1.23 cfs	0.96 cfs	-0.27 cfs	
$10-$ Year	2.53 cfs	2.05 cfs	-0.48 cfs	
$25-$ Year	3.36 cfs	2.77 cfs	-0.59 cfs	

Design Point 3				
$24-$ Hour Storm	Pre-Development Peak Flow Rate	Post-Development Peak Flow Rate	Reduction	
$2-$ Year	13.69 cfs	12.39 cfs	-1.3 cfs	
$10-$ Year	30.41 cfs	29.86 cfs	-0.55 cfs	
$25-$ Year	43.93 cfs	43.56 cfs	-0.37 cfs	

Design Point 4				
$24-$ Hour Storm	Pre-Development Peak Flow Rate	Post-Development Peak Flow Rate	Reduction	
$2-$ Year	0.40 cfs	0.05 cfs	-0.35 cfs	
$10-$ Year	0.95 cfs	0.12 cfs	-0.83 cfs	
$25-$ Year	1.33 cfs	0.17 cfs	-1.16 cfs	

Design Point 5				
$24-$ Hour Storm	Pre-Development Peak Flow Rate	Post-Development Peak Flow Rate	Reduction	
$2-$ Year	2.11 cfs	0.52 cfs	-1.59 cfs	
$10-$ Year	5.37 cfs	1.22 cfs	-4.15 cfs	
$25-$ Year	7.61 cfs	1.69 cfs	-5.92 cfs	

CONCLUSION

As demonstrated in this report effective pollutant removal is achieved through deep sump catch basins and a wet pond with an adequately sized permanent pool. Cooling is achieved by discharging excess stormwater from the pond through an underdrain gravel trench. The wet ponds were designed to exceed the required channel protection, therefore providing a large reduction in flow rates leaving the site. All five design points are either reduced in size or drain to a wet pond and provide the required flood control for all storm events.

APPENDIX A
 NOAA RAINFALL DATA

NOAA Atlas 14, Volume 10, Version 3
Location name: Kittery, Maine, USA*
Latitude: $\mathbf{4 3 . 1 0 1 2}^{\circ}$, Longitude: -70.7553°
Elevation: $50.28 \mathrm{ft}^{* *}$
' source: ESRI Maps
" source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Paviovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orian Wilhite
NOAA, National Weather Service, Silver Spring, Maryland
PF_tabular | PF_graphical | Maps_\&_aerials

PF tabular

based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$											
Duration	Average recurrence interval (years)										
	1	2	5	10	25	50	10	200	00	000	
5-1	$(0.23$	0.28	$(0.3$	$(0.41$	$(0.494-0.939)$				$\begin{gathered} 1.11 \\ (0.718-1.72) \\ \hline \end{gathered}$		
10	(0.330	(0.397-0.693)	$(0.506-0.888)$	$(0.5$		$\\|_{(0.778-1.53)}$	$(0.851-1.78)$	$(0.910-2.04)$			
15	0_{0}	0.4			$\stackrel{(0 .}{ }$	$\begin{array}{\|c\|} \hline 1.27 \\ (0.915-1.81) \\ \hline \end{array}$					
30	$(0.52$		$(0.804-1.41)$	(0.943-1.6							
60	$(0.657-1.15)$	(0.792-1.38)	$(1.01-1.77)$								
2-hr											
$3-$											
6	$\begin{gathered} 1.77 \\ (1.36-2.30) \end{gathered}$	$(1.66-2.82)$	$(2.16-3.68)$				$(3.76-7.71)$				
12-h	$\begin{gathered} 2.23 \\ (1.73-2.88) \end{gathered}$	$\begin{gathered} 2.75 \\ (2.13-3.56) \\ \hline \end{gathered}$									
	$\begin{gathered} 2.64 \\ (2.05-3.38) \end{gathered}$	$(2.57-4.25)$	$(3.41-5.68)$	$(4.10-6.90)$			$(6.20-12.5)$		(7.76-18.1)		
2	$\begin{gathered} 2.94 \\ (2.29-3.75) \\ \hline \end{gathered}$	(2.95	$(4.00-6.60)$	(4.86-			$(7.59-15.2)$	$(8.16-17.6)$			
	$(2.50-4.06)$	(3.21-5.22)	$(4.36-7.13)$	$\begin{gathered} 6.82 \\ (5.29-8.75) \\ \hline \end{gathered}$	$(6.48-11.6)$	$(7.32-13.7)$	(8.27-16.5)	$(8.88-19.1)$	(10.7-24.7)	$\begin{gathered} \hline 19.2 \\ (12.4-29.7) \\ \hline \end{gathered}$	
	(2.70-4.37	(3.44-5.5	(4.63-7.5	$\begin{gathered} \hline 7.21 \\ (5.60-9.23) \end{gathered}$	$\begin{gathered} 8.97 \\ (6.84-12.2 \\ \hline \end{gathered}$	$(7.71-14.4)$	(8.70-17.3)	(9.33-20.0)	(11.2-25.9)	$\begin{gathered} 20.2 \\ (13.0-31.1) \end{gathered}$	
	$\begin{gathered} 4.17 \\ (3.29-5.26) \end{gathered}$	$\begin{gathered} 5.16 \\ (4.07-6.52) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.79 \\ (5.33-8.60) \\ \hline \end{gathered}$	$(6.35-10.4)$	$\begin{gathered} 9.98 \\ (7.64-13.5) \\ \hline \end{gathered}$	$(8.55-15.8)$	(9.57-18.9)	$(10.2-21.8)$	$(12.2-27.9)$	(14.0-33.3)	
	$\begin{gathered} 4.86 \\ (3.84-6.11) \\ \hline \end{gathered}$	$(4.65-7.41)$	$(5.96-9.55)$	$(7.01-11.4)$	$\begin{gathered} 10.9 \\ (8.33-14.6) \\ \hline \end{gathered}$	$(9.26-17.0)$	$(10.3-20.1)$	(10.9-23.1)	$(12.8-29.2)$	$(14.6-34.5)$	
20-day	(5.48-8.60	(6.37-10.0)	$\begin{gathered} 9.86 \\ (7.81-12.4) \\ \hline \end{gathered}$	$\begin{gathered} 11.4 \\ (8.97-14.4) \end{gathered}$	$\begin{gathered} 13.5 \\ (10.3-17.9) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 15.1 \\ (11.3-20.5) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 16.7 \\ (12.3-23.7) \\ \hline \end{array}$	$\begin{gathered} \hline 18.8 \\ (13.0-27.1) \\ \hline \end{gathered}$	(14.5-32.7)	(15.9-37.3)	
30	(6.83-10.7)	$(7.78-12.2)$	$\begin{gathered} \hline 11.7 \\ (9.32-14.7) \\ \hline \end{gathered}$	$(10.6-16.8)$	$(12.0-20.5)$	$(13.0-23.3)$	$(13.9-26.7)$	$(14.6-30.3)$	(15.9-35.5)	(16.9-39.7)	
45	(8.51-13.2)	$(9.54-14.8)$	$\begin{gathered} \hline 14.1 \\ (11.2-17.5) \\ \hline \end{gathered}$	$(12.5-19.8)$	$(14.0-23.8)$	$(15.1-26.8)$	$(15.9-30.3)$	(16.6-34.2)	$(17.7-39.2)$	(18.4-43.1)	
60-day	$\begin{gathered} 12.4 \\ (9.93-15.3) \end{gathered}$	$\begin{gathered} 13.7 \\ (11.0-17.0) \end{gathered}$	$\begin{gathered} \hline 16.0 \\ (12.8-19.9) \end{gathered}$	$\begin{gathered} \hline 17.9 \\ (14.2-22.3) \end{gathered}$	$\begin{gathered} \hline 20.4 \\ (15.7-26.5) \end{gathered}$	$\begin{gathered} 22.4 \\ (16.8-29.7) \end{gathered}$	$\begin{gathered} 24.4 \\ (17.6-33.4) \end{gathered}$	$\begin{gathered} 26.2 \\ (18.3-37.5) \\ \hline \end{gathered}$	(19.2-42.5)	$\begin{gathered} 30.3 \\ (19.8-46.2) \end{gathered}$	

[^0]
APPENDIX B
 FEMA FIRM MAPS

town or
Town of
KITTERY, MAINE -

APPENDIX C NRCS SOIL REPORT AND MAP

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)		C/D
Soils		
Soil Rating Polygons		
A	\square	Not rated or not available
A/D	Water Fe	ures
B	\sim	Streams and Canals
	Transpo	tion
B/D	H+	Rails
C	-	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	\cdots	Local Roads
Soil Rating Lines	Background	
\cdots A	-	Aerial Photography
\cdots A/D		
\cdots B		
\cdots B/D		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \mathrm{B}$		
$\square \mathrm{B} / \mathrm{D}$		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: York County, Maine
Survey Area Data: Version 17, Sep 11, 2018
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Sep 9, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CrB	Croghan loamy sand, 0 to 8 percent slopes	A	0.2	0.6%
LnB	Lyman loam, 3 to 8 percent slopes, rocky	D	7.8	25.9%
LnC	Lyman loam, 8 to 15 percent slopes, rocky	D	0.0	0.0%
Na	Naumburg sand	A/D	19.3	64.3%
Pg	Pits, gravel		2.7	9.2%
Totals for Area of Interest	$\mathbf{3 0 . 0}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

APPENDIX D HIGH INTENSITY SOIL SURVEY AND MAP

WETLAND DELINEATION

VERNAL POOL SURVEY

\&
CLASS A HIGH INTENSITY SOIL SURVEY REPORT

FOR
TAX MAP 6, LOTS 15B \& 16A
TAX MAP 13, LOT 4
76 DENNETT ROAD
KITTERY, MAINE

PREPARED FOR:
HOYLE, TANNER \& ASSOCIATES, INC. 100 INTERNATIONAL DRIVE, SUITE \#360 PORTSMOUTH, NEW HAMPSHIRE 03801

PREPARED BY:

JOSEPH W. NOEL
P.O. BOX 174

SOUTH BERWICK, MAINE

JUNE 17, 2019
JWN \#98-1243

JOSEPH W. NOEL P.O. BOX 174

SOUTH BERWICK, MAINE 03908
(207) 384-5587

CERTIFIED SOIL SCIENTIST \quad WETLAND SCIENTIST \quad LICENSED SITE EVALUATOR

INTRODUCTION

This report and the attached high intensity soil survey were prepared to aid in planning for the proposed mixed-use residential development. The property is $23+/$ acres and located off of Dennett Road just north of the southbound on-ramp to Route 95 in Kittery, Maine. Four large buildings for approximately 315 units with one smaller building for amenities are planned within uplands. An access road with approximately 405 parking spaces along with three stormwater ponds surrounds the buildings. The access road will cross one narrow ditch where an existing woods road crossing is located.

WETLAND DELINEATION

The wetland boundary has been delineated and/or re-flagged with surveyors tape in April of 1995, May of 2001, June, October and December of 2015, January of 2016, and May of 2019. A peer review of the wetlands and vernal pool were also conducted by Longview Partners, LLC in April of 2019. A review of the wetland boundary was also conducted by the undersigned during the fieldwork for the soil survey and one area that was flagged in 2001 was not shown on the project plans and was mapped on May 27, 2019. The wetland is located in the southern corner of the property and away from the proposed development.

The original delineations in 1995 and 2001 used the Federal Manual for Identifying and Delineating Jurisdictional Wetlands (1989). The most recent re-flaggings and review used the methodologies in the U.S. Army Corps of Engineers document Corps of Engineers Wetlands Delineation Manual (1987) along with the required Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region, (Version 2.0) were used. Wetlands were identified based on soils, vegetation, and wetland hydrology. Except in special cases, all three factors (hydric soils, hydrophytic vegetation, and wetland hydrology) must be present for an area to classify as wetland. A predominance of wetland and upland vegetation was determined from visual estimates in the vegetative layers (herbaceous, shrub, sapling, and tree layers). Shallow soil observations were made using a shovel and hand auger to assess the soil morphological features and to examine for wetland hydrology.

The majority of the wetlands are gently sloping to nearly level and forested with small scrubshrub pockets. On May 10, 2019, an on-site with Lucien Langlois of the Maine Department of Environmental Protection (MDEP) was conducted with the undersigned to determine the upper limits of the MDEP stream. The stream limits were flagged and are designated on the project plans.

VERNAL POOL SURVEY

A vernal pool survey was conducted in April of 2015. One vernal pool was observed on the property. The vernal pool met the criteria to be documented as a MDEP Significant Vernal Pool. The vernal pool data was reviewed by the Maine Department of Inland Fisheries and Wildlife and the MDEP and the vernal pool was officially designated as a MDEP Significant Vernal Pool. The limits of the vernal pool were flagged and placed on the project plans.

SOIL SURVEY

Fieldwork was conducted in May of 2019. Soil mapping procedures followed Maine Association of Professional Soil Scientists (MAPSS) guidelines (revised, March 2009). Twenty-one backhoe excavated test pits were conducted on May 16, 2019 (refer to attached test pit logs and soil conditions summary table for details). The test pit information was used to generate the high intensity soil survey and for stormwater planning. The test pits were located by Hoyle, Tanner \& Associates, Inc. and placed on the project plans. Additional soil observations were conducted on May 27, 2019 to verify the soil map units (test pit information was not completed). If additional test pits are conducted, the soil survey may be fine-tuned/updated, if necessary. The hydrologic soil groups for the soil map were taken from the NRCS Web Soil Survey.

SOIL SURVEY CLASS

Soil surveys are divided into four levels or classes. For this project, a Class A (high intensity) level map was created. Characteristics of Class A maps include the following:

1. Map units will not contain dissimilar limiting individual inclusions larger than one-eighth acre. Dissimilar limiting inclusions may total more than one-eighth acre per map unit delineation, in the aggregate, if not continuous.
2. Scale of 1 inch equals 100 feet or larger (e.g., $1^{\prime \prime}=50^{\prime}$).
3. Ground control - base line and test pits for which detailed data is recorded are accurately located under the direction of a registered land surveyor or qualified professional engineer.
4. Base map with 2 -foot contour lines with ground survey, or aerial survey with ground control.

SOLL MAP UNIT DESCRIPTIONS

Below are descriptions for each of the soil map units found on the site. Each of the soil map units includes: physical characteristics of the soil, hydrologic soil group, slopes, soil inclusions, soil limitations, etc.

1) Map Symbol: Co

Soil Series: Colonel
The somewhat poorly drained Colonel soils are formed in dense glacial till. These soils are on an intermediate position on the landscape and are scattered throughout the property. The surface horizon varies from 7 to 10 inches thick and consists of a light olive brown fine
sandy loam with faint redox features. The subsoil is an olive brown fine sandy loam with redox features. The substratum is a dense lodgement till. The seasonal high watertable is between 0 to 10 inches. These soils are deep to bedrock, the hydrologic soil group is D , the slopes range from $3-8 \%$, and the flood hazard is none. Inclusions in this map unit are the Peru, Peru Variant and Eldridge soil series comprising up to 10%.

Soil Limitations

Colonel soils have limitations for road and building construction due to seasonal wetness and moderate frost action. These limitations can be overcome by intercepting and diverting water upslope of the project area, using coarse fill to raise foundation floors and driveways and footing drains around the buildings. Frost heaves can be prevented by proper design and construction of the road/parking subgrade.

Map Symbol: El
Soil Series: Eldridge
The Eldridge series consists of very deep moderately well drained and somewhat poorly drained (variant) soils formed in glacial outwash deposits that are generally underlain by loamy glaciolacustrine deposits. The only map unit that has a drainage class of somewhat poorly drained is located in the western most side of the parcel away from the development area. The Eldridge soils are intermediate on the landscape and are limited to three map units on the property. Typically, the surface horizon is a strong brown to dark yellowish brown loamy sand about 16 to 20 inches thick. The subsoil is a mottled olive sand. The substratum is olive gray silt loam with prominent redox features. These soils are deep to bedrock, the hydrologic soil group is D , the slopes range from 3-8\%, and the flood hazard is none. Inclusions are the Colonel, Croghan and Peru soils series comprising up to 15%.

Soil Limitations

Eldridge soils have limitations for road and building construction due to seasonal wetness and moderate frost action. These limitations can be overcome by intercepting and diverting water upslope of the project area, using coarse fill to raise foundation floors and driveways and footing drains around the buildings.
3) Map Symbol: Pe

Soil Series: Peru
The Peru soils are moderately well drained and formed in loamy lodgement till. It occurs on the subtle till knolls in the mapping area and has a high to intermediate position on the landscape. Typically bedrock is greater than 40 inches, however, on this parcel there are soils with bedrock between 20 and 40 inches deep. The surface horizon is dark brown to dark yellowish brown fine sandy loam (about 10 inches thick). The subsoil is dark yellowish brown to yellowish brown fine sandy loam (about 18 inches thick). The substratum is a dense light olive brown very fine sandy loam to sandy loam with redoximorphic features (i.e., evidence of wetness). The hydrologic soil group is D, the slopes range from $3-15 \%$, and the flood hazard is none. Inclusions in this map unit are the Eldridge, Tunbridge, and Colonel soil series comprising 15\% of this map unit.

Soil Limitations

Limitations to development are moderate frost action and wetness due to perched water on the restrictive subsoil/substratum. These limitations can be overcome by intercepting and diverting water upslope of the construction area, by using coarse fill to raise foundation floors and roads and by using footing drains around buildings. Frost heaves can be prevented by proper design and construction of the road/parking subgrade.
4) Map Symbol: Sw

Soil Series: Swanton

The Swanton soils consist of poorly drained soils that formed in a thin mantle of loamy to sandy outwash/lacustrine materials underlain by fine textured marine and lacustrine deposits. It is found in low-lying wetland areas. A MDEP stream is located in the Swanton map unit in the southeast corner of the site. Typically, the surface horizon is very dark grayish brown to olive gray sandy loam. The subsoil is a strong brown to olive sandy loam to loamy sand. The substratum is an olive sandy loam to silt loam. The seasonal high watertable is at or very near the soil surface. These soils are deep to bedrock, the hydrologic soil group is D, the slopes range from $0-8 \%$, and the flood hazard is none. Inclusions are the poorly drained Roundabout, and Naumburg soil series soils comprising 10% of this map unit.

Soil Limitations

These poorly drained soils have severe limitations to site development and are being avoided. These soils are contained within wetlands and their use/development would be governed by local, state and federal regulations.
5) Map Symbol: Tp

Soil Series: Tunbridge-Peru-Lyman Complex
This mapping unit represents a complex of three soil series that could not be mapped separately (i.e., Tunbridge, Peru and Lyman).

The well drained Tunbridge soils formed in moderately deep sandy loam till. Typically on this site, the surface horizon varies from 8 to 10 inches thick and consists of dark brown fine sandy loam. The subsoil is a dark yellowish brown fine sandy loam. The subsoil is underlain by bedrock at depths typically ranging from 20 to 40 inches.

The second component is the Peru soil series. Refer to Peru Map unit section for generalized soil information on the Peru soils.

The third component is the Lyman soil series. The Lyman soil is somewhat excessively drained and formed in a thin mantle of glacial till overlying bedrock. Typically, the surface horizon is a dark brown fine sandy loam about 8 inches thick. The subsoil, ranging from 8 to 14 inches is a strong brown to dark yellowish brown fine sandy loam. Bedrock is encountered less than 20 inches below the surface.

This soil complex is located high on the landscape and occurs in two map units on the property. These soils are shallow to deep to bedrock (i.e., $8^{\prime \prime}$ to $>40^{\prime \prime}$), the hydrologic soil group is C due to the Tunbridge being the higher component percentage of the complex, the slopes range from $3-15 \%$, and the flood hazard is none. Inclusions are the Abram soil series (bedrock less than 10 inches) comprising 5% of this map unit. There are also disturbed (Udorthents) related to the woods roads that run through the map unit.

Soil Limitations

The depth to bedrock feature of the soils represent a limitation to site development. Where a certain depth of soil is required over bedrock for an activity such has pouring a foundation, a shallow excavation, or siting a road, bedrock may be ripped or blasted out as necessary and replaced with fill. Fill may also be placed over the bedrock to attain the desired depth without blasting or ripping. A second limitation is wetness due to perched water on the bedrock or perched on the restrictive feature of the Peru soils. This limitation can be overcome by using fill to raise foundations and roads, and by using footing drains around foundations.
6) Map Symbol: Ur

Soil Series: Udorthents
The Udorthents map unit is used for identifying areas of altered/disturbed soils. These moderately well drained (estimated) soils have been excavated, regraded and filled. It is of moderate extent and found in the front portion of the property near Dennett Road except one small map unit located in the center of the property. These soils are deep to bedrock, the hydrologic soil group is estimated to be D, the slopes range from $0->25 \%$, and the flood hazard is none. Inclusions along the edges of this map unit are the Eldridge, Peru, and Colonel soil series comprising 5% of this map unit.

Soil Limitations

A limitation to development is wetness due to perched water on the restrictive subsoil/substratum. These limitations can be overcome by intercepting and diverting water upslope of the construction area, by using coarse fill to raise foundation floors and roads and by using footing drains around buildings. Frost heaves can be prevented by proper design and construction of the road/parking subgrade. These soils were most likely in areas that would have been classified as the Colonel and Peru soils and would have similar limitations to site development.

SOIL MAP LIMITATIONS

The quality of the soil map produced is affected by the accuracy of the topographic information and location of the wetland flagging by the surveyors along with the quality of the ground control provided. Inaccuracies or deficiencies in the base map may be unknowingly reflected in the soil survey, particularly in the boundary line placement between soil map units.

Each map unit contains inclusions. Inclusions are soil series within a map unit that are different from the named soil series. In general, the total amount of dissimilar soils is less than twentyfive percent of the named map unit.

It is important to realize that this map was designed for the use in planning for a mixed-use residential development and that it may not be adequate for other uses.

Maine Certified Soil Scientist \#209
Wetland Scientist

| | Exploration | \boldsymbol{x} | Description of subsurface materials by: | Depths to (inches): | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SOLL PROFILE/CLASSIFICATION INFORMATION

COLONEL SERIES - HYD GRP D - NON-HYDRIC
PERU SERIES VARLANT - HYD GRP D - NON-HYDRIC
BACKHOE EXCAVATED TEST PITS WERE CONDUCTED ON MAY 16, 2019. THE TEST PITS WERE CONDUCTED FOR SOIL MAPPING PURPOSES. TEST PITS $2,4,12,13,14, \& 15$ WERE ALSO USED FOR STORMWATER PLANNING. SLOPES CAN BE DETERMINED FROM THE PROJECT PLANS.

PERU SERIES - HYD GRPD - NON-HYDRIC
PERU SERIES - HYD GRP D - NON-HYDRIC

SOIL PROFILE/CLASSIFICATION INFORMATION

SWANTON SERIES - HYD GRP D - HYDRIC

BACKHOE EXCAVATED TEST PITS WERE CONDUCTED ON MAY 16, 2019. THE TEST PITS WERE CONDUCTED FOR SOLL MAPPING PURPOSES. TEST PITS $2,4,12,13,14$, \& 15 WERE ALSO USED FOR STORMWATER PLANNING. SLOPES CAN BE DETERMINED FROM THE PROJECT PLANS.

PERU SERIES - HYD GRP D - NON-HYDRIC

Observation Hole $\quad \square$ Teat Pit \square Boring
0 n Depth of Onganic Horizon Above Mineral Sail

UDORTHENTS (FILLED \& SMOOTHED) - HYD GRP D - NON-HYDRIC

SOIL PROFILE/CLASSIFICATION INFORMATION

Project Name:		Applicant Name: WILLIAM WHARI								
				Observation Hole 10 \qquad Test Pit\qquad Depth of Organic Horizon Above Mineral Soil						

PERU SERIES - HYD GRPD - NON-HYDRIC
PERU SERIES - HYD GRP D - NON-HYDRIC
BACKHOE EXCAVATED TEST PITS WERE CONDUCTED ON MAY 16, 2019. THE TEST PITS WERE CONDUCTED FOR SOLL MAPPING PURPOSES. TEST PITS $2,4,12,13,14, \& 15$ WERE ALSO USED FOR STORMWATER PLANNING. SLOPES CAN BE DETERMINED FROM THE PROJECT PLANS.

SOIL PROFILE/CLASSIFICATION INFORMATION

PERU SERIES - HYD GRPD - NON-HYDRIC
ELDRIDGE SERIES - HYD GRP D - NON-HYDRIC
BACKHOE EXCAVATED TEST PITS WERE CONDUCTED ON MAY 16, 2019. THE TEST PITS WERE CONDUCTED FOR SOL MAPPING PURPOSES. TEST PITS $2,4,12,13,14, \& 15$ WERE ALSO USED FOR STORMWATER PLANNING. SLOPES CAN BE DETERMINED FROM THE PROJECT PLANS.

GLDRIDGE SERIES - HYD GRPD - NON-HYDRIC
CROGHAN SERIES - HYD GRP A - NON-HYDRIC

SOIL PROFLLE/CLASSIFICATION INFORMATION

Project Name:	Applicant Name:	Project Location (municipality)
	WILLIAM WHARF'	76 DENNETT ROAD (TAX MAP 6, LOTS 15B \& 16A -TAX MAP 13, LOT 4), KITTERY, ME

Observation Hole $\frac{17}{17} \quad$ Test Pit Depth of Organic Horizon Above Mineral Soil

ABRAM, LYMAN, \& TUNBRIDGE SERIES - YD GRPD - NON-HYDRIC

Observation Hole
I Depth of Organic Horizon Above Mineral Soil

PERU SERIES - HYD GAP D - NON-HYDRIC

BACKHOE EXCAVATED TEST PITS WERE CONDUCTED ON MAY 16, 2019. THE TEST PITS WERE CONDUCTED FOR SOLL MAPPING PURPOSES. TEST PITS $2,4,12,13,14, \& 15$ WERE ALSO USED FOR STORMWATER PLANNING. SLOPES CAN BE DETERMINED FROM THE PROJECT PLANS.

TUNBRIDGE SERIES - KYD GR C - NON-HYDRIC

PERU SERIES - HYD GRID - NON-HYDRIC

SOIL PROFILE/CLASSIFICATION INFORMATION

LYMAN SERIES - HYD GRPD - NON-HYDRIC
BACKHOE EXCAVATED TEST PTS WERE CONDUCTED ON MAY 16, 2019. THE TEST PITS WERE CONDUCTED FOR SOL MAPPING PURPOSES. TEST PITS 2, 4, 12, 13, 14, \& 15 WERE ALSO USED FOR STORMWATER PLANNING. SLOPES CAN BE DETERMINED FROM THE PROJECT PLANS.
Observation Hole

Signature

221209
SE \# SS\#
5/22/19
\qquad Date

APPENDIX E
 WET POND DESIGN CALCULATIONS

WET POND 1 CALCULATIONS					SHEET	1	OF	6
PROJECT 76 DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY,ME		BASIS FOR ESTIMATE						
	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	$\begin{aligned} & \square \text { NO DES } \\ & \square \text { PRELIM } \end{aligned}$	MPLETED DESIGN	$\begin{aligned} & \square \\ & \square \end{aligned}$	FINAL SPECIF			
SUBJECT		COMPUTED	MJG	CHE	CKED		MT	

WET POND 1

Total Area Draining to Wet Pond 1:	85450	Sq. Ft.
Total Impervious Area Draining to Wet Pond 1:	76820	Sq. Ft.
Total Non-Impervious Area Draining to Wet Pond 1:	8630	Sq. Ft.
Impervious Area Draining to Sediment Forebay 1:	31625	Sq. Ft.
Impervious Area Draining to Sediment Forebay 2:	28145	Sq. Ft.
Non-Impervious Area Draining to Sediment Forebay 1:	6465	Sq. Ft.
Non-Impervious Area Draining to Sediment Forebay 2:	2165	Sq. Ft.
Building Roof Area Draining to Sediment Forebay 1:	15400	Sq. Ft.
Building Roof Area Draining to Sediment Forebay 2:	1650	Sq. Ft.

Summary of Design		
Total Area Draining to Wet Pond	85450	Sq. Ft.
Total Impervious Area	76820	Sq. Ft.
Total Non-Impervious Area	8630	Sq. Ft.
Permanent Pool Volume	18313	Ft.3
Channel Protection Volume	7507	Ft.3
Sediment Forebay 1 Capacity	45	Ft.3
Sediment Forebay 2 Capacity	70	Ft.3
Underdrain Length	30	Ft.
Release Time	29.8	Hours

A. WET POND CALCULATIONS

1. Required Permanent Pool Volume shall be the following formula:
$\mathrm{V}_{\text {req. }}=(2.0$ inches x Impervious Area(Sq.Ft) $)+(0.8$ inches x Non-Impervious Area(Sq.Ft.) $)$
$\mathrm{V}_{\text {req. }}=2 \mathrm{x} \quad 76820+0.8 \mathrm{x} \quad 8630=13379 \mathrm{Ft}^{3}$
$\mathrm{~V}_{\text {prov. }}=18313 \mathrm{Ft}.{ }^{3}$
2. Permanent Pool Average Depth shall be the following formula:
$\mathrm{D}_{\text {ave. }}=$ Storage Volume @ $52.5 \mathrm{ft} /$ Surface Area @ 52.5 ft
$\mathrm{D}_{\text {ave. }}=13503 \quad \mathrm{Ft.}^{3} / 4370 \mathrm{Ft.}^{2}$
$\mathrm{D}_{\text {ave. }}=3.09 \mathrm{Ft}$.
3. The Required Channel Protection Volume shall be the following formula:

$\mathrm{V}_{\text {req. }}$	=	(1.0 inches x Impervious Area(Sq.Ft)) + (0.4 inches x Non-Impervious Area(Sq.Ft.))								
$\mathrm{V}_{\text {req }}$.	$=$	1 x	76820	+	0.4	x	8630	=	6689	Ft. ${ }^{3}$
$\mathrm{V}_{\text {prov. }}$	=	7507	Ft. ${ }^{3}$							

Prepared by Hoyle, Tanner \& Associates, Inc.
Printed 6/14/2019
HydroCAD® 10.00-23 s/n 00471 © 2018 HydroCAD Software Solutions LLC

Summary for Pond P1: Perm Pool 1

[43] Hint: Has no inflow (Outflow=Zero)

Stage-Area-Storage for Pond P1: Wet Pond 1

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)
53.50	7,855	0	56.10	10,996	24,359
53.55	7,907	394	56.15	11,056	24,910
53.60	7,960	791	56.20	11,117	25,465
53.65	8,012	1,190	56.25	11,178	26,022
53.70	8,065	1,592	56.30	11,239	26,582
53.75	8,118	1,997	56.35	11,301	27,146
53.80	8,171	2,404	56.40	11,362	27,712
53.85	8,224	2,814	56.45	11,424	28,282
53.90	8,278	3,226	56.50	11,485	28,855
53.95	8,331	3,641	56.55	11,547	29,431
54.00	8,385	4,059	56.60	11,610	30,010
54.05	8,443	4,480	56.65	11,672	30,592
54.10	8,502	4,904	56.70	11,734	31,177
54.15	8,561	5,330	56.75	11,797	31,765
54.20	8,619	5,760	56.80	11,860	32,356
54.25	8,679	6,192	56.85	11,923	32,951
54.30	8,738	6,628	56.90	11,986	33,549
54.35	8,797	7,066	56.95	12,049	34,150
54.40	8,857	7,507	57.00	12,113	34,754
54.45	8,917	7,952	57.05	12,176	35,361
54.50	8,977	8,399	57.10	12,240	35,971
54.55	9,038	8,849			
54.60	9,098	9,303			
54.65	9,159	9,759			
54.70	9,220	10,219			
54.75	9,281	10,681			
54.80	9,342	11,147			
54.85	9,404	11,615			
54.90	9,465	12,087			
54.95	9,527	12,562			
55.00	9,590	13,040			
55.05	9,652	13,521			
55.10	9,714	14,005			
55.15	9,777	14,492			
55.20	9,840	14,983			
55.25	9,903	15,476			
55.30	9,967	15,973			
55.35	10,030	16,473			
55.40	10,094	16,976			
55.45	10,158	17,482			
55.50	10,222	17,992			
55.55	10,287	18,505			
55.60	10,351	19,021			
55.65	10,416	19,540			
55.70	10,481	20,062			
55.75	10,546	20,588			
55.80	10,611	21,117			
55.85	10,677	21,649			
55.90	10,743	22,185			
55.95	10,809	22,723			
56.00	10,875	23,265			
56.05	10,935	23,811			

Summary for Pond P1: Wet Pond 1

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=56.10' @ 12.20 hrs Surf.Area= 10,999 sf Storage= 24,386 cf
Flood Elev= 39.00' Surf.Area= 0 sf Storage= 0 cf
Plug-Flow detention time $=179.0$ min calculated for 25,932 cf (54% of inflow)
Center-of-Mass det. time $=91.3 \min (830.8-739.6)$

Device	Routing	Invert	Outlet Devices
\#1	Primary	55.85'	30.0' long x 6.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .003 .504 .004 .505 .005 .50
			Coef. (English) 2.372 .512 .702 .682 .682 .672 .6512 .651 .65
			2.652 .662 .662 .672 .692 .722 .762 .83

Primary OutFlow Max=9.16 cfs @ 12.20 hrs HW=56.10' (Free Discharge)
—1 $^{1=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(W e i r ~ C o n t r o l s ~} 9.16$ cfs @ 1.21 fps)

WET POND 2 CALCULATIONS					SHEET	3	OF	6
PROJECT 76 DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY,ME		BASIS FOR ESTIMATE						
ENGINEER Hoyle,Tanner Associates, Inc.	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	$\begin{aligned} & \square \text { NO DES } \\ & \square \text { PRELIM } \end{aligned}$	MPLETED DESIGN	$\begin{aligned} & \square \\ & \square \end{aligned}$	FINAL SPECIFY			
SUBJECT		COMPUTED	MJG	CHE	CKED		MT	

WET POND 2

Total Area Draining to Wet Pond 2:	59355	Sq. Ft.
Total Impervious Area Draining to Wet Pond 2:	54610	Sq. Ft.
Total Non-Impervious Area Draining to Wet Pond 2:	4745	Sq. Ft.
Impervious Area Draining to Sediment Forebay 3:	12270	Sq. Ft.
Impervious Area Draining to Sediment Forebay 4:	40690	Sq. Ft.
Non-Impervious Area Draining to Sediment Forebay 3:	0	Sq. Ft.
Non-Impervious Area Draining to Sediment Forebay 4:	4745	Sq. Ft.
Building Roof Area Draining to Sediment Forebay 3:	0	Sq. Ft.
Building Roof Area Draining to Sediment Forebay 4:	1650	Sq. Ft.

Summary of Design		
Total Area Draining to Wet Pond	59355	Sq. Ft.
Total Impervious Area	54610	Sq. Ft.
Total Non-Impervious Area	4745	Sq. Ft.
Permanent Pool Volume	12916	Ft.3
Channel Protection Volume	5590	Ft.3
Sediment Forebay 1 Capacity	45	Ft.3
Sediment Forebay 2 Capacity	70	Ft.3
Underdrain Length	30	Ft.
Release Time	31.1	Hours

A. WET POND CALCULATIONS

1. Required Permanent Pool Volume shall be the following formula:

$\mathrm{V}_{\text {req. }}$	=	(2.0 inches x Impervious Area(Sq.Ft)) + (0.8 inches x Non-Impervious Area(Sq.Ft.))								
$\mathrm{V}_{\text {req. }}$	$=$	2 x	54610	+	0.8	x	4745	=	9418	Ft. ${ }^{3}$
$\mathrm{V}_{\text {prov. }}$	$=$	12916	Ft. ${ }^{3}$							

2. Permanent Pool Average Depth shall be the following formula:
$\mathrm{D}_{\text {ave. }}=$ Storage Volume @ $51.5 \mathrm{ft} /$ Surface Area @ 51.5 ft
$\mathrm{D}_{\text {ave. }}=9346 \quad \mathrm{Ft.}^{3} / 2930 \mathrm{Ft.}^{2}$
$\mathrm{D}_{\text {ave. }}=3.19 \mathrm{Ft}$.
3. The Required Channel Protection Volume shall be the following formula:
$\mathrm{V}_{\text {req. }}=(1.0$ inches \times Impervious Area(Sq.Ft) $)+(0.4$ inches \times Non-Impervious Area(Sq.Ft.))
$V_{\text {req. }}=1 \mathrm{x} 54610+0.4 \mathrm{x} 4745=4709 \quad \mathrm{Ft.}^{3}$
$\mathrm{~V}_{\text {prov. }}=5590 \mathrm{Ft}.{ }^{3}$

Prepared by Hoyle, Tanner \& Associates, Inc.
Printed 6/14/2019
HydroCAD® 10.00-23 s/n 00471 © 2018 HydroCAD Software Solutions LLC

Summary for Pond 6P: Perm Pool 2

[43] Hint: Has no inflow (Outflow=Zero)

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| \#1 | 45.00 | 12,916 cf | Custom Stage Data (Prismatic)Listed below (Recalc) |
| Elevation | Surf.Area
 (feet) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 45.00 | 315 | 0 | 0 |
| 46.00 | 560 | 438 | 438 |
| 48.00 | 1,225 | 1,785 | 2,223 |
| 50.00 | 2,115 | 3,340 | 5,563 |
| 51.50 | 2,930 | 3,784 | 9,346 |
| 52.50 | 4,210 | 3,570 | 12,916 |

Prepared by Hoyle, Tanner \& Associates, Inc.
HydroCAD® 10.00-23 s/n 00471 © 2018 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond P2: Wet Pond 2

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{gathered} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{gathered}$	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)
52.50	6,460	0	55.10	9,693	21,222
52.55	6,524	325	55.15	9,748	21,709
52.60	6,589	652	55.20	9,803	22,197
52.65	6,654	984	55.25	9,857	22,689
52.70	6,719	1,318	55.30	9,913	23,183
52.75	6,785	1,655	55.35	9,968	23,680
52.80	6,851	1,996	55.40	10,023	24,180
52.85	6,917	2,341	55.45	10,079	24,682
52.90	6,984	2,688	55.50	10,134	25,188
52.95	7,051	3,039	55.55	10,190	25,696
53.00	7,118	3,393	55.60	10,246	26,207
53.05	7,186	3,751	55.65	10,303	26,720
53.10	7,254	4,112	55.70	10,359	27,237
53.15	7,322	4,476	55.75	10,415	27,756
53.20	7,390	4,844	55.80	10,472	28,279
53.25	7,459	5,215	55.85	10,529	28,804
53.30	7,528	5,590	55.90	10,586	29,331
53.35	7,598	5,968	55.95	10,643	29,862
53.40	7,668	6,350	56.00	10,700	30,396
53.45	7,738	6,735			
53.50	7,808	7,123			
53.55	7,879	7,516			
53.60	7,950	7,911			
53.65	8,021	8,311			
53.70	8,093	8,713			
53.75	8,165	9,120			
53.80	8,237	9,530			
53.85	8,310	9,944			
53.90	8,383	10,361			
53.95	8,456	10,782			
54.00	8,530	11,207			
54.05	8,581	11,634			
54.10	8,633	12,065			
54.15	8,684	12,498			
54.20	8,736	12,933			
54.25	8,788	13,371			
54.30	8,840	13,812			
54.35	8,892	14,255			
54.40	8,944	14,701			
54.45	8,997	15,150			
54.50	9,049	15,601			
54.55	9,102	16,055			
54.60	9,155	16,511			
54.65	9,208	16,970			
54.70	9,262	17,432			
54.75	9,315	17,896			
54.80	9,369	18,363			
54.85	9,422	18,833			
54.90	9,476	19,306			
54.95	9,530	19,781			
55.00	9,584	20,259			
55.05	9,639	20,739			

Summary for Pond P2: Wet Pond 2

Inflow Area =	75,305 sf,	78.11\% Impervious,	Inflow Depth > 5.58" for $25-Y r$ event
Inflow	10.62 cfs @	12.09 hrs , Volume=	35,024 cf
Outflow	4.27 cfs @	12.32 hrs , Volume=	$16,074 \mathrm{cf}$, Atten $=60 \%$ Lag $=13.8 \mathrm{~min}$
Primary	4.27 cfs @	12.32 hrs , Volume=	16,074 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 55.00' @ 12.32 hrs Surf.Area= 9,587 sf Storage= 20,286 cf
Flood Elev=56.00' Surf.Area= 10,700 sf Storage= 30,396 cf
Plug-Flow detention time $=210.0 \mathrm{~min}$ calculated for $16,065 \mathrm{cf}$ (46% of inflow)
Center-of-Mass det. time= 109.1 min (849.9-740.8)

Volume	Invert Avail.Storage Storage Description			
\#1	52.50' 30,396 cf Custom Stage Data (Conic)Listed below (Recalc)			
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
52.50	6,460	0	0	6,460
54.00	8,530	11,207	11,207	8,580
56.00	10,700	19,189	30,396	10,859

Device	Routing	Invert	Outlet Devices
\#1	Primary	54.85'	30.0' long x 6.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .802 .00
			2.503 .003 .504 .004 .505 .005 .50
			Coef. (English) 2.372 .512 .702 .682 .682 .672 .6512 .652 .65
			2.652 .662 .662 .672 .692 .722 .762 .83

Primary OutFlow Max=4.18 cfs @ 12.32 hrs HW=55.00' (Free Discharge)
L1=Broad-Crested Rectangular Weir(Weir Controls 4.18 cfs @ 0.92 fps)

WET POND 3 CALCULATIONS			SHEET	5 OF	6
PROJECT 76 DENNETT ROAD		DATE PREPARED June 2019			
LOCATION KITTERY,ME					
engineer Hoyle,Tanner	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	No design Completed PRELIMINARY DESIGN	\square FINALDES \square SPECIFY		
SUBJECT		COMPUTED MJG	CHECKED	SMT	

WET POND 3

| Total Area Draining to Wet Pond 3: | 184690 | Sq. Ft. |
| :--- | :--- | :--- | :--- |
| Total Impervious Area Draining to Wet Pond 3: | 141380 | Sq. Ft. |
| Total Non-Impervious Area Draining to Wet Pond 3: | 43310 | Sq. Ft. |
| Impervious Area Draining to Sediment Forebay 5: | 99230 | Sq. Ft. |
| Non-Impervious Area Draining to Sediment Forebay 5: | 43310 | Sq. Ft. |
| Building Roof Area Draining to Sediment Forebay 5: | 42150 | Sq. Ft. |

Summary of Design		
Total Area Draining to Wet Pond	184690	Sq. Ft.
Total Impervious Area	141380	Sq. Ft.
Total Non-Impervious Area	43310	Sq. Ft.
Permanent Pool Volume	29209	Ft. 3
Channel Protection Volume	13516	Ft. 3
Sediment Forebay 1 Capacity	445	Ft. 3
Underdrain Length	50	Ft.
Release Time	31.3	Hours

A. WET POND CALCULATIONS

1. Required Permanent Pool Volume shall be the following formula:
$\mathrm{V}_{\text {req. }} \quad=\quad(2.0$ inches \times Impervious Area(Sq.Ft) $)+(0.8$ inches \times Non-Impervious Area(Sq.Ft. $\left.)\right)$
$\mathrm{V}_{\text {req. }}=2 \mathrm{x} 141380+0.8 \mathrm{x} 43310=26451 \mathrm{Ft.}^{3}$
$\mathrm{V}_{\text {prov. }}=29209 \mathrm{Ft.}^{3}$
2. Permanent Pool Average Depth shall be the following formula:
$D_{\text {ave. }} \quad=$ Storage Volume @ $48.5 \mathrm{ft} \quad$ Surface Area @ 48.5 ft
$D_{\text {ave. }}=21679 \mathrm{Ft}^{3} / 6830 \mathrm{Ft}^{3}{ }^{2}$
$\mathrm{D}_{\text {ave. }}=3.17 \mathrm{Ft}$.
3. The Required Channel Protection Volume shall be the following formula:
$V_{\text {req. }}=(1.0$ inches x Impervious Area(Sq.Ft) $)+(0.4$ inches x Non-Impervious Area(Sq.Ft.) $)$
$\mathrm{V}_{\text {req. }}=1 \mathrm{x} 141380+0.4 \mathrm{x} 43310=13225 \mathrm{Ft}^{3}{ }^{3}$
$\mathrm{V}_{\text {prov. }}=13516 \mathrm{Ft.}^{3}$

Prepared by Hoyle, Tanner \& Associates, Inc.
Printed 6/14/2019
HydroCAD® 10.00-23 s/n 00471 © 2018 HydroCAD Software Solutions LLC

Summary for Pond 1P: Perm Pool 3

[43] Hint: Has no inflow (Outflow=Zero)

Volume	Invert Avail.Storage Storage Description		
\#1	44.00'	29,209 cf Cust	tage Data (Prismatic)Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
44.00	2,960	0	0
46.00	4,540	7,500	7,500
48.00	6,345	10,885	18,385
48.50	6,830	3,294	21,679
49.50	8,230	7,530	29,209

Stage-Area-Storage for Pond P3: Wet Pond 3

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
49.50	11,485	0	52.10	16,123	35,543
49.55	11,550	576	52.15	16,195	36,351
49.60	11,615	1,155	52.20	16,267	37,162
49.65	11,680	1,737	52.25	16,339	37,978
49.70	11,745	2,323	52.30	16,412	38,796
49.75	11,810	2,912	52.35	16,484	39,619
49.80	11,876	3,504	52.40	16,557	40,445
49.85	11,942	4,099	52.45	16,630	41,274
49.90	12,008	4,698	52.50	16,703	42,108
49.95	12,074	5,300	52.55	16,776	42,945
50.00	12,140	5,905	52.60	16,849	43,785
50.05	12,230	6,515	52.65	16,923	44,630
50.10	12,319	7,128	52.70	16,996	45,478
50.15	12,410	7,747	52.75	17,070	46,329
50.20	12,500	8,369	52.80	17,144	47,185
50.25	12,591	8,997	52.85	17,218	48,044
50.30	12,682	9,629	52.90	17,293	48,907
50.35	12,774	10,265	52.95	17,367	49,773
50.40	12,866	10,906	53.00	17,442	50,643
50.45	12,958	11,552	53.05	17,516	51,517
50.50	13,051	12,202	53.10	17,591	52,395
50.55	13,143	12,857	53.15	17,667	53,276
50.60	13,237	13,516	53.20	17,742	54,162
50.65	13,330	14,180	53.25	17,817	55,050
50.70	13,424	14,849	53.30	17,893	55,943
50.75	13,518	15,523	53.35	17,968	56,840
50.80	13,613	16,201	53.40	18,044	57,740
50.85	13,708	16,884	53.45	18,120	58,644
50.90	13,803	17,572	53.50	18,197	59,552
50.95	13,898	18,264	53.55	18,273	60,464
51.00	13,994	18,962	53.60	18,349	61,379
51.05	14,090	19,664	53.65	18,426	62,299
51.10	14,187	20,371	53.70	18,503	63,222
51.15	14,284	21,082	53.75	18,580	64,149
51.20	14,381	21,799			
51.25	14,478	22,520			
51.30	14,576	23,247			
51.35	14,674	23,978			
51.40	14,773	24,714			
51.45	14,871	25,455			
51.50	14,971	26,201			
51.55	15,070	26,952			
51.60	15,170	27,708			
51.65	15,270	28,469			
51.70	15,370	29,235			
51.75	15,471	30,006			
51.80	15,572	30,783			
51.85	15,674	31,564			
51.90	15,775	32,350			
51.95	15,878	33,141			
52.00	15,980	33,938			
52.05	16,052	34,738			

Summary for Pond P3: Wet Pond 3

Inflow Area =	207,350 sf,	72.13\% Impervious,	Inflow Depth > 5.44" for $25-\mathrm{Yr}$ event
Inflow	28.73 cfs @	12.09 hrs , Volume=	93,982 cf
Outflow	19.87 cfs @	12.18 hrs , Volume=	$52,370 \mathrm{cf}$, Atten= 31\%, Lag= 5.3 min
Primary	19.87 cfs @	12.18 hrs , Volume=	52,370 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=52.73' @ 12.18 hrs Surf.Area= 17,042 sf Storage $=46,005$ cf
Flood Elev=53.00' Surf.Area= 17,442 sf Storage $=50,643$ cf
Plug-Flow detention time $=169.8 \mathrm{~min}$ calculated for $52,175 \mathrm{cf}$ (56% of inflow)
Center-of-Mass det. time $=85.9 \mathrm{~min}$ (829.4-743.5)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	49.50	$64,149 \mathrm{cf}$	Custom Stage Data (Conic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area $(\mathrm{sq}$-ft)
49.50	11,485	0	0	11,485
50.00	12,140	5,905	5,905	12,168
52.00	15,980	28,032	33,938	16,098
53.75	18,580	30,211	64,149	18,823

Device	Routing	Invert	Outlet Devices
\#1	Primary	$52.45{ }^{\prime}$	55.0' long x 6.0' breadth Broad-Crested Rectangular Weir
			Head (feet) $0.200 .400 .600 .801 .001 .201 .401 .601 .80 \quad 2.00$
			2.503 .003 .504 .004 .505 .005 .50
			Coef. (English) 2.372 .512 .702 .6812 .682 .672 .6512 .651 .65
			2.652 .662 .662 .672 .692 .722 .762 .83

Primary OutFlow Max=19.45 cfs @ 12.18 hrs HW=52.73' (Free Discharge)
L-1=Broad-Crested Rectangular Weir(Weir Controls 19.45 cfs @ 1.28 fps)

APPENDIX F
 RIP-RAP DESIGN
 CALCULATIONS

CALCULATION OF RIP-RAP SIZING					SHEET	1	OF	8
PROJECT DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY,ME		BASIS FOR ESTIMATE						
engineer Hoyle, Tanner	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	$\begin{aligned} & \square \text { NO DES } \\ & \square \text { PRELIM } \end{aligned}$	MPLETED DESIGN	\square FINAL DESIGNSPECIFY				
SUBJECT 10 YEAR DESIGN		COMPUTED	MJG	CHE	CKED			

HEADWALL 1

POST DEVELOPMENT FLOW	$=6.13 \mathrm{cfs}$
DISCHARGE PIPE SIZE	$=18$ inches

A. OUTLET PROTECTION APRON SIZING

1. Width of the apron at the outlet of the pipe shall be 3 times the diameter of the pipe
```
3x(18 / 12) = 4.5 ft
```

2. The length of the apron shall be the following formula:

$$
L_{a}=\frac{1.8 Q}{D_{0}^{3 / 2}}+7 D_{0}
$$

$L_{a}=$ length of apron
$D_{0}=$ diameter of pipe
$\mathrm{Q}=$ discharge from pipe

$$
\mathrm{L}_{\mathrm{a}}=\frac{2 \times 6.13}{1.5^{3 / 2}}+7 \times 1.5=17 \mathrm{ft}
$$

3. The minimum width of the channel downstream of the outlet for maximum tailwater conditions shall be determined by the following formula

$$
\begin{aligned}
\mathrm{W} & =3 \mathrm{D}_{0}+0.4^{*} \mathrm{~L}_{\mathrm{a}} \\
& =4.5+6.6 \\
& =11 \mathrm{ft}
\end{aligned}
$$

B. Determine rock rip-rap sizing for given channel

Summary of Design		
Post-Development Flow	6.13	cfs
Discharge Pipe Size	18	inches
Width of Apron at Pipe	4.5	feet
Length of Apron	17	feet
Width of Apron Downstream of pipe	11	feet
Rip-Rap Size	6	inches
Volume of Rip-Rap Needed	4.77	C.Y.

CALCULATION OF RIP-RAP SIZING					SHEET	2	OF	8
PROJECT DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY, ME		BASIS FOR ESTIMATE						
ENGINEER \qquad Associates, inc.	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	NO DES PRELIM	MPLETED DESIGN	$\begin{aligned} & \square \\ & \square \end{aligned}$	FINAL D SPECIFY			
SUBJECT 10 YEAR DESIGN		COMPUTED	MJG	CHE	CKED			

HEADWALL 2

POST DEVELOPMENT FLOW	$=3.71 \mathrm{cfs}$
DISCHARGE PIPE SIZE	$=18 \mathrm{inches}$

A. OUTLET PROTECTION APRON SIZING

1. Width of the apron at the outlet of the pipe shall be 3 times the diameter of the pipe
```
3x(18 / 12) = 4.5 ft
```

2. The length of the apron shall be the following formula:

$$
L_{a}=\frac{1.8 Q}{D_{0}^{3 / 2}}+7 D_{0}
$$

$L_{a}=$ length of apron
$D_{0}=$ diameter of pipe
$\mathrm{Q}=$ discharge from pipe

$$
\mathrm{L}_{\mathrm{a}}=\frac{2 \times 3.71}{1.5^{3 / 2}}+7 \times 1.5=14 \mathrm{ft}
$$

3. The minimum width of the channel downstream of the outlet for maximum tailwater conditions shall be determined by the following formula

$$
\begin{aligned}
\mathrm{W} & =3 \mathrm{D}_{\mathrm{o}}+0.4^{*} \mathrm{~L}_{\mathrm{a}} \\
& =4.5+5.7 \\
& =10 \mathrm{ft}
\end{aligned}
$$

B. Determine rock rip-rap sizing for given channel

Summary of Design		
Post-Development Flow	3.71	cfs
Discharge Pipe Size	18	inches
Width of Apron at Pipe	4.5	feet
Length of Apron	14	feet
Width of Apron Downstream of pipe	10	feet
Rip-Rap Size	6	inches
Volume of Rip-Rap Needed	3.84	C.Y.

CALCULATION OF RIP-RAP SIZING					SHEET	3	OF	8
PROJECT DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY, ME		BASIS FOR ESTIMATE						
ENGINEER \qquad Associates, inc.	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	NO DES PRELIM	MPLETED DESIGN	$\begin{aligned} & \square \\ & \square \end{aligned}$	FINAL D SPECIFY			
SUBJECT 10 YEAR DESIGN		COMPUTED	MJG	CHE	CKED			

HEADWALL 3

POST DEVELOPMENT FLOW	$=3.53 \mathrm{cfs}$
DISCHARGE PIPE SIZE	$=24 \mathrm{inches}$

A. OUTLET PROTECTION APRON SIZING

1. Width of the apron at the outlet of the pipe shall be 3 times the diameter of the pipe
$3 \times(241$
12)

6
ft
2. The length of the apron shall be the following formula:

$$
L_{a}=\frac{1.8 Q}{D_{0}^{3 / 2}}+7 D_{0}
$$

$L_{a}=$ length of apron
$D_{0}=$ diameter of pipe
$\mathrm{Q}=$ discharge from pipe

$$
\mathrm{L}_{\mathrm{a}}=\frac{2 \times 3.53}{2^{3 / 2}}+7 \times 2=16 \mathrm{ft}
$$

3. The minimum width of the channel downstream of the outlet for maximum tailwater conditions shall be determined by the following formula

$$
\begin{aligned}
\mathrm{W} & =3 \mathrm{D}_{0}+0.4^{*} \mathrm{~L}_{\mathrm{a}} \\
& =6 \mathrm{~b}+6 \\
& =12 \mathrm{ft}
\end{aligned}
$$

B. Determine rock rip-rap sizing for given channel

$$
\begin{aligned}
& d_{50}=\frac{0.02 Q^{1.33}}{\text { Tw } \times \text { Do }} \\
& \mathrm{d}_{50}=\text { median stone diameter } \\
& D_{0}=\text { diameter of pipe } \\
& \mathrm{Q}=\text { discharge from pipe } \\
& \text { Tw = tailwater depth }=2 \text { (Maximum tailwater @ HW\#G during } 25 \text { year storm) } \\
& \mathrm{d}_{50}=0.31^{\prime \prime} \\
& d_{50}=\frac{(0.02) x}{2.08} x-2.00003^{1.33}=0 \mathrm{ft} \\
& \text { Use } d_{50}=\quad 3^{\prime \prime} \quad \text { Therefore } d=6 "
\end{aligned}
$$

Summary of Design		
Post-Development Flow	3.53	cfs
Discharge Pipe Size	24	inches
Width of Apron at Pipe	6	feet
Length of Apron	16	feet
Width of Apron Downstream of pipe	12	feet
Rip-Rap Size	6	inches
Volume of Rip-Rap Needed	5.57	C.Y.

CALCULATION OF RIP-RAP SIZING					SHEET	4	OF	8
PROJECT DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY, ME		BASIS FOR ESTIMATE						
ENGINEER \qquad Associates, inc.	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	NO DES PRELIM	MPLETED DESIGN	$\begin{aligned} & \square \\ & \square \end{aligned}$	FINAL D SPECIFY			
SUBJECT 10 YEAR DESIGN		COMPUTED	MJG	CHE	CKED			

HEADWALL 5

POST DEVELOPMENT FLOW	$=18.41 \mathrm{cfs}$
DISCHARGE PIPE SIZE	$=36$ inches

A. OUTLET PROTECTION APRON SIZING

1. Width of the apron at the outlet of the pipe shall be 3 times the diameter of the pipe
$3 \times(36 / 12)=9 \mathrm{ft}$
2. The length of the apron shall be the following formula:

$$
L_{a}=\frac{1.8 Q}{D_{0}^{3 / 2}}+7 D_{0}
$$

$L_{a}=$ length of apron
$D_{0}=$ diameter of pipe
$Q=$ discharge from pipe
$L_{a}=\frac{2 \times 18.41}{3^{3 / 2}}+$ $7 x$ $3=$ 27 ft
3. The minimum width of the channel downstream of the outlet for maximum tailwater conditions shall be determined by the following formula

$$
\begin{aligned}
\mathrm{W} & =3 \mathrm{D}_{\mathrm{o}}+0.4^{*} \mathrm{~L}_{\mathrm{a}} \\
& =9 \mathrm{t} .0 \\
& =20 \mathrm{ft}
\end{aligned}
$$

B. Determine rock rip-rap sizing for given channel

$$
\begin{aligned}
& d_{50}=\frac{0.02 Q^{1.33}}{\text { Tw } \times \text { Do }} \\
& d_{50}=\text { median stone diameter } \\
& D_{0}=\text { diameter of pipe } \\
& \mathrm{Q}=\text { discharge from pipe } \\
& \text { Tw = tailwater depth }=2 \text { (Maximum tailwater @ HW\#G during } 25 \text { year storm) } \\
& \mathrm{d}_{50}=1.85^{\prime \prime} \\
& d_{50}=\frac{(0.02) \mathrm{x}}{2.08 \times 3.41^{1.33}}=0.2 \mathrm{ft} \quad \text { Use } \mathrm{d}_{50}=\quad 3^{\prime \prime} \quad \text { Therefore } \mathrm{d}=6{ }^{\prime \prime}
\end{aligned}
$$

Summary of Design		
Post-Development Flow	18.41	cfs
Discharge Pipe Size	36	inches
Width of Apron at Pipe	9	feet
Length of Apron	27	feet
Width of Apron Downstream of pipe	20	feet
Rip-Rap Size	6	inches
Volume of Rip-Rap Needed	14.68	C.Y.

CALCULATION OF RIP-RAP SIZING					SHEET	5	OF	8
PROJECT DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY, ME		BASIS FOR ESTIMATE						
ENGINEER \qquad Associates, inc.	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	NO DES PRELIM	MPLETED DESIGN	$\begin{aligned} & \square \\ & \square \end{aligned}$	FINAL D SPECIFY			
SUBJECT 10 YEAR DESIGN		COMPUTED	MJG	CHE	CKED			

HEADWALL 6

POST DEVELOPMENT FLOW	$=1.43 \mathrm{cfs}$
DISCHARGE PIPE SIZE	$=12 \mathrm{inches}$

A. OUTLET PROTECTION APRON SIZING

1. Width of the apron at the outlet of the pipe shall be 3 times the diameter of the pipe
$3 \times(12 /$
12) $=3$
ft
2. The length of the apron shall be the following formula:

$$
L_{a}=\frac{1.8 Q}{D_{0}^{3 / 2}}+7 D_{0}
$$

$L_{a}=$ length of apron
$D_{0}=$ diameter of pipe
$\mathrm{Q}=$ discharge from pipe

$$
\mathrm{L}_{\mathrm{a}}=\frac{2 \times 1.43}{1^{3 / 2}}+7 \mathrm{x} \quad 1=10 \mathrm{ft}
$$

3. The minimum width of the channel downstream of the outlet for maximum tailwater conditions shall be determined by the following formula

$$
\begin{aligned}
\mathrm{W} & =3 \mathrm{D}_{0}+0.4^{*} \mathrm{~L}_{\mathrm{a}} \\
& =3 \mathrm{~b}+3.8 \\
& =7 \mathrm{ft}
\end{aligned}
$$

B. Determine rock rip-rap sizing for given channel

$$
\begin{aligned}
& d_{50}=\frac{0.02 Q^{1.33}}{\text { Tw } \times \text { Do }} \\
& d_{50}=\text { median stone diameter } \\
& D_{0}=\text { diameter of pipe } \\
& \text { Q = discharge from pipe } \\
& \text { Tw = tailwater depth }=2 \text { (Maximum tailwater @ HW\#G during } 25 \text { year storm) } \\
& \mathrm{d}_{50}=0.19^{\prime \prime} \\
& \left.d_{50}=\frac{(0.02) x}{2.08} \times 1.43^{1.33}\right)=0 \mathrm{ft} \\
& \text { Use } d_{50}=\quad 3^{\prime \prime} \quad \text { Therefore } d=6 "
\end{aligned}
$$

Summary of Design		
Post-Development Flow	1.43	cfs
Discharge Pipe Size	12	inches
Width of Apron at Pipe	3	feet
Length of Apron	10	feet
Width of Apron Downstream of pipe	7	feet
Rip-Rap Size	6	inches
Volume of Rip-Rap Needed	1.74	C.Y.

CALCULATION OF RIP-RAP SIZING					SHEET	6	OF	8
PROJECT DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY, ME		BASIS FOR ESTIMATE						
ENGINEER Hoyle,Tanner	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	$\begin{aligned} & \square \text { NO DES } \\ & \square \text { PRELIM } \end{aligned}$	MPLETED DESIGN		FINAL D SPECIFY			
SUBJECT 10 YEAR DESIGN		COMPUTED	MJG	CHE	CKED		MT	

HEADWALL 7

POST DEVELOPMENT FLOW	$=5.44 \mathrm{cfs}$
DISCHARGE PIPE SIZE	$=18 \mathrm{inches}$

A. OUTLET PROTECTION APRON SIZING

1. Width of the apron at the outlet of the pipe shall be 3 times the diameter of the pipe
```
3x(18 / 12) = 4.5 ft
```

2. The length of the apron shall be the following formula:

$$
L_{a}=\frac{1.8 Q}{D_{0}^{3 / 2}}+7 D_{0}
$$

$L_{a}=$ length of apron
$D_{0}=$ diameter of pipe
$\mathrm{Q}=$ discharge from pipe

$$
\mathrm{L}_{\mathrm{a}}=\frac{2 \times 5.44}{1.5^{3 / 2}}+7 \times 1.5=16 \mathrm{ft}
$$

3. The minimum width of the channel downstream of the outlet for maximum tailwater conditions shall be determined by the following formula

$$
\begin{aligned}
\mathrm{W} & =3 \mathrm{D}_{\mathrm{o}}+0.4^{*} \mathrm{~L}_{\mathrm{a}} \\
& =4.5+6.3 \\
& =11 \mathrm{ft}
\end{aligned}
$$

B. Determine rock rip-rap sizing for given channel

Summary of Design		
Post-Development Flow	5.44	cfs
Discharge Pipe Size	18	inches
Width of Apron at Pipe	4.5	feet
Length of Apron	16	feet
Width of Apron Downstream of pipe	11	feet
Rip-Rap Size	6	inches
Volume of Rip-Rap Needed	4.49	C.Y.

CALCULATION OF RIP-RAP SIZING					SHEET	7	OF	8
PROJECT DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY, ME		BASIS FOR ESTIMATE						
ENGINEER \qquad Associates, inc.	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	NO DES PRELIM	MPLETED DESIGN	$\begin{aligned} & \square \\ & \square \end{aligned}$	FINAL D SPECIFY			
SUBJECT 10 YEAR DESIGN		COMPUTED	MJG	CHE	CKED			

HEADWALL 8

POST DEVELOPMENT FLOW	$=20.48 \mathrm{cfs}$
DISCHARGE PIPE SIZE	$=36$ inches

A. OUTLET PROTECTION APRON SIZING

1. Width of the apron at the outlet of the pipe shall be 3 times the diameter of the pipe
$3 \times(36 / 12)=9 \mathrm{ft}$
2. The length of the apron shall be the following formula:

$$
L_{a}=\frac{1.8 Q}{D_{0}^{3 / 2}}+7 D_{0}
$$

$L_{a}=$ length of apron
$D_{0}=$ diameter of pipe
$Q=$ discharge from pipe
$L_{a}=\frac{2 \times 20.48}{3^{3 / 2}}+$ $7 x$ 28 ft
3. The minimum width of the channel downstream of the outlet for maximum tailwater conditions shall be determined by the following formula

$$
\begin{aligned}
\mathrm{W} & =3 \mathrm{D}_{\mathrm{o}}+0.4^{*} \mathrm{~L}_{\mathrm{a}} \\
& =9 \mathrm{t} .2 \\
& =20 \mathrm{ft}
\end{aligned}
$$

B. Determine rock rip-rap sizing for given channel

$$
\begin{aligned}
& d_{50}=\frac{0.02 Q^{1.33}}{\text { Tw } \times \text { Do }} \\
& d_{50}=\text { median stone diameter } \\
& D_{0}=\text { diameter of pipe } \\
& Q=\text { discharge from pipe } \\
& \text { Tw = tailwater depth }=2 \text { (Maximum tailwater @ HW\#G during } 25 \text { year storm) } \\
& \mathrm{d}_{50}=2.13^{\prime \prime} \\
& d_{50}=\frac{(0.02) \times 20.48^{1.33}}{2.08 \times 3.0000}=0.2 \mathrm{ft} \quad \text { Use } d_{50}=\quad 3 " \quad \text { Therefore } d=6 \text { " }
\end{aligned}
$$

Summary of Design		
Post-Development Flow	20.48	cfs
Discharge Pipe Size	36	inches
Width of Apron at Pipe	9	feet
Length of Apron	28	feet
Width of Apron Downstream of pipe	20	feet
Rip-Rap Size	6	inches
Volume of Rip-Rap Needed	15.21	C.Y.

CALCULATION OF RIP-RAP SIZING					SHEET	8	OF	8
PROJECT DENNETT ROAD		DATE PREPARED June 2019						
LOCATION KITTERY, ME		BASIS FOR ESTIMATE						
engineer Hoyle,Tanner (XAssociates.inc.	100 INTERNATIONAL DRIVE, SUITE 360 PORTSMOUTH, NH 03801	$\begin{aligned} & \square \text { NO DESI } \\ & \square \text { PRELIMI } \end{aligned}$	$\begin{aligned} & \text { MPLETED } \\ & \text { JESIGN } \end{aligned}$	$\begin{aligned} & \square \\ & \square \end{aligned}$	$\begin{aligned} & \text { FINAL D } \\ & \text { SPECIFY } \end{aligned}$			
SUBJECT 10 YEAR DESIGN		COMPUTED	MJG	CHE	CKED			

HEADWALL 9

POST DEVELOPMENT FLOW	$=9.04 \mathrm{cfs}$
DISCHARGE PIPE SIZE (Wet Pond 3)	$=36$ inches
DISCHARGE PIPE SIZE (DMH3)	$=24$ inches

A. OUTLET PROTECTION APRON SIZING

1. Width of the apron at the outlet of the pipe shall be 3 times the diameter of the pipe
$3 \times(601$
12) =
15 ft
2. The length of the apron shall be the following formula:
$L_{a}=\frac{1.8 Q}{D_{0}^{3 / 2}}+7 D_{0}$
$L_{a}=$ length of apron
$D_{0}=$ diameter of pipe
$\mathrm{Q}=$ discharge from pipe
$\mathrm{L}_{\mathrm{a}}=\frac{2 \times 9.04}{5^{3 / 2}}+7 \times 3=22 \mathrm{ft}$
3. The minimum width of the channel downstream of the outlet for maximum tailwater conditions shall be determined by the following formula

$$
\begin{aligned}
W & =3 D_{0}+0.4^{*} L_{a} \\
& =15+9.0 \\
& =24 \mathrm{ft}
\end{aligned}
$$

B. Determine rock rip-rap sizing for given channel

Summary of Design		
Post-Development Flow	9.04	cfs
Discharge Pipe Size	36	inches
Width of Apron at Pipe	15	feet
Length of Apron	22	feet
Width of Apron Downstream of pipe	24	feet
Rip-Rap Size	6	inches
Volume of Rip-Rap Needed	16.21	C.Y.

APPENDIX G INSPECTION AND MAINTENANCE MANUAL

Inspection and Maintenance Plan

Aztec, LLC will be responsible for the maintenance of the stormwater infrastructure as well as the establishment of maintenance contracts. At a minimum, the appropriate and relevant activities for each of the stormwater management facilities will be performed on the prescribed schedule. Maintenance is performed by the qualified employees, who provide full-time support to the development. Funding for maintenance is generated from the development through revenue generated by the business.

A sample maintenance log is included in this plan. Records of all inspections and maintenance work accomplished must be kept on file and retained for a minimum 5 -year time span. The maintenance logbook shall be made available to the DEP upon request.

Aztec, LLC
C/O William Wharff
62 Portland Road, Suite 25
Kennebunk, ME 04043
(617) 767-1897

During Construction

The following standards must be met during construction.
Inspection and corrective action. Inspect disturbed and impervious areas, erosion control measures, materials storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. Inspect these areas at least once a week as well as before and within 24 hours after a storm event (rainfall), and prior to completing permanent stabilization measures. A person with knowledge of erosion and stormwater control, including the standards and conditions in the permit, shall conduct the inspections.

Maintenance. If best management practices (BMPs) need to be repaired, the repair work should be initiated upon discovery of the problem but no later than the end of the next workday. If additional BMPs or significant repair of BMPs are necessary, implementation must be completed within 7 calendar days and prior to any storm event (rainfall). All measures must be maintained in effective operating condition until areas are permanently stabilized.

Documentation. Keep a log (report) summarizing the inspections and any corrective action taken. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of erosion and sedimentation controls, materials storage areas, and vehicles access points to the parcel. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and location(s) where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken.

The log must be made accessible to Maine Department of Environmental Protection (the Department) staff and a copy must be provided upon request. The permittee shall retain a copy of the log for a period of at least three years from the completion of permanent stabilization.

Post Construction

The following standards must be met after construction.
Plan. Carry out an approved inspection and maintenance plan that is consistent with the minimum requirements of this section. The plan must address inspection and maintenance of the project's permanent erosion control measures and stormwater management system.

Inspection and maintenance. All measures must be maintained in effective operating condition. A person with knowledge of erosion and stormwater control, including the standards and conditions in the permit, shall conduct the inspections. The following areas, facilities, and measures must be inspected and identified deficiencies must be corrected. Areas, facilities, and measures other than those listed below may also require inspection. Inspection or maintenance tasks other than those discussed below must be included in the maintenance plan developed.
a) Inspect vegetated areas, particularly slopes and embankments, early in the growing season or after heavy rains to identify active or potential erosion problems. Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows.
b) Inspect ditches, swales and other open stormwater channels in the spring, in late fall, and after heavy rains to remove any obstructions to flow, remove accumulated sediments and debris, to control vegetated growth that could obstruct flow, and to repair any erosion of the ditch lining. Vegetated ditches must be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity. Any woody vegetation growing through riprap linings must also be removed. Repair any slumping side slopes as soon as practicable. If the ditch has a riprap lining, replace riprap on areas where any underlying filter fabric or underdrain gravel is showing through the stone or where stones have dislodged. The channel must receive adequate routine maintenance to maintain capacity and prevent or correct any erosion of the channel's bottom or side slopes.
c) Inspect culverts in the spring, in late fall, and after heavy rains to remove any obstructions to flow; remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit; and to repair any erosion damage at the culvert's inlet and outlet. If sediment in culverts or closed drainage systems exceeds 20% of the diameter of the pipe, the sediment should be removed. This may be accomplished by hydraulic flushing or any mechanical means; however, care should be taken as to not flush the sediment downstream. All pipes should be inspected on an annual basis.
d) Inspect and clean out catch basins. Clean-out must include the removal and legal disposal of any accumulated sediments and debris at the bottom of the basin, at any inlet grates, at any inflow channels to the basin, and at any pipes between basins. Remove any floating debris and any floating oils (using oil-absorptive pads) present in the catch basin.
e) Inspect resource and treatment buffers once a year for evidence of erosion, concentrating flow, and encroachment by development. If flows are concentrating within a buffer, site grading, level spreaders, or ditch turn-outs must be used to ensure a more even distribution of flow into a buffer. Check down slope of all spreaders for erosion. If erosion
is present, adjust or modify the spreader's lip to ensure a better distribution of flow into a buffer. Clean-out any accumulation of sediment within the spreader bays. At least once a year and following major storms, the level spreader should be inspected for sand accumulation and debris that may reduce its capacity. Sediment build-up within the swale should be removed when it has accumulated to approximately 25% of design volume or channel capacity. Dispose of the sediments appropriately. Remove debris such as leaf litter, branches and tree growth from the spreader. Vegetated spreaders may require mowing. Do not store snow within the area of the level spreader. The reconstruction of the level spreader may be necessary when sheet flow from the spreader channelize into the buffer.
f) Inspect at least once per year, each stormwater management pond, including the pond's embankments, outlet structure, and emergency spillway. Remove and dispose of accumulated sediments in the pond. Control woody vegetation on the pond's embankments.
g) Inspect at least once per year, each gravel trench underdrain. The gravel trench underdrain will be inspected semi-annually and following major storm events to ensure that it is draining within 24 to 48 hours following a one-inch storm or greater. Following a storm that fills the system to overflow, it should drain in no less than 36 to 72 hours. If the system drains too fast, an orifice may need to be added on the underdrain outlet or, if already present, may need to be modified.
h) If mowing is desired, handheld string trimmers or push-mowers are allowed and the grass should be mowed no more than 2 times per growing season to maintain grass heights of no less than 6 inches. Any bare area or erosion rills shall be repaired with new media or sandy loam then seeded and mulched. Harvesting and pruning of excessive growth will need to be done occasionally. Weeding to control unwanted or invasive plants may also be necessary. Maintaining good grass cover will minimize clogging with fine sediments.
i) Paved surfaces shall be swept or vacuumed periodically on an as-needed basis to minimize transportation of sediment during rainfall events.
j) Areas where stone is displaced should be repaired to assure stability. With time, riprap may need to be added. Vegetation growing through riprap should be removed on a yearly schedule.

Regular Maintenance

a) Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring. Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader. Grading of gravel roads, or grading of the gravel shoulders of gravel or paved roads, must be routinely performed to ensure that stormwater drains immediately off the road surface to adjacent buffer areas or stable ditches, and is not impeded by accumulations of graded material on the road shoulder or by excavation of false ditches in the shoulder. If water bars or open-top culverts are used to divert runoff from road surfaces, clean-out any sediments within or at the outlet of these structures to restore their function.
b) Manage each buffer's vegetation consistently with the requirements in any deed restrictions for the buffer. Wooded buffers must remain fully wooded and have no disturbance to the duff layer. Vegetation in non-wooded buffers may not be cut more than three times per year, and may not be cut shorter than six inches.

Documentation

a) Keep a log (report) summarizing inspections, maintenance, and any corrective actions taken. The log must include the date on which each inspection or maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean-out of any sediments or debris, indicate where the sediment and debris was disposed after removal. The log must be made accessible to Department staff and a copy provided to the Department upon request. The permittee shall retain a copy of the log for a period of at least five years from the completion of permanent stabilization.

Recertification Requirement

Within three months of the expiration of each five-year interval from the date of issuance of the permit, the permittee shall certify the following to the department.
(a) All areas of the project site have been inspected for areas of erosion, and appropriate steps have been taken to permanently stabilize these areas.
(b) All aspects of the stormwater control system have been inspected for damage, wear, and malfunction, and appropriate steps have been taken to repair or replace the facilities.
(c) The erosion and stormwater maintenance plan for the site is being implemented as written, or modifications to the plan have been submitted to and approved by the department, and the maintenance log is being maintained.

Municipalities with separate storm sewer systems regulated under the Maine Pollutant Discharge Elimination System (MPDES) Program may report on all regulated systems under their control as part of their required annual reporting in lieu of separate certification of each system. Municipalities not regulated by the MPDES Program, but that are responsible for maintenance of permitted stormwater systems, may report on multiple stormwater systems in one report.

Duration of Maintenance

Perform maintenance as described and required in the permit unless and until the system is formally accepted by the municipality or quasi-municipal district, or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system. If a municipality or quasi-municipal district chooses to accept a stormwater management system, or a component of a stormwater system, it must provide a letter to the Department stating that it assumes responsibility for the system. The letter must specify the components of the system for which the municipality or district will assume responsibility, and that the municipality or district agrees to maintain those components of the system in compliance with Department standards. Upon such assumption of responsibility, and approval by the Department, the municipality, quasimunicipal district, or association becomes a co-permittee for this purpose only and must comply with all terms and conditions of the permit.
\qquad
MIXED-USE RESIDENTIAL DEVELOPMENT, 76 DENNETT ROAD, KITTERY, MAINE
BMP INSPECTION \& MAINTENANCE LOG

		INSPECTION				MAINTENANCE		
STRUCTURE	LOCATION	$\begin{aligned} & \hline \text { DATE } \\ & \text { DUE } \end{aligned}$	$\begin{gathered} \text { DATE } \\ \text { INSPECTION } \end{gathered}$	CONDITION	BY	$\begin{aligned} & \hline \text { DATE } \\ & \text { DUE } \end{aligned}$	DATE CLEANED	BY
Pavement Sweeping								
Vegetated Areas								
Catch Basins								
Swales and Channels								
Culvert								
Wet Pond 1								
Wet Pond 2								
Wet Pond 3								
Sediment Forebays								
Underdrained Gravel Trenches								
Rip-Rap Level Spreaders								

APPENDIX H
 PRE- AND POST-DEVELOPMENT WATERSHED ANALYSIS

Kittery - Pre

Prepared by Hoyle, Tanner \& Associates, Inc.
HydroCAD® 10.00-23 s/n 00471 © 2018 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	CN	Description (subcatchment-numbers)
31,480	65	Brush, Good, HSG C $(3 \mathrm{~A}, 3 \mathrm{~B}, 4,5)$
186,630	73	Brush, Good, HSG D $(1,2,3 \mathrm{~A}, 3 \mathrm{~B}, 4,5)$
9,870	89	Gravel roads, HSG C $(3 \mathrm{~A}, 3 \mathrm{~B}, 4,5)$
100,970	91	Gravel roads, HSG D $(1,2,3 \mathrm{~A}, 3 \mathrm{~B})$
12,270	98	Paved parking, HSG D $(1,2)$
41,385	70	Woods, Good, HSG C $(3 \mathrm{~B}, 4,5)$
781,475	77	Woods, Good, HSG D (1, 2, 3A, 3B, 4, 5)
$\mathbf{1 , 1 6 4 , 0 8 0}$	$\mathbf{7 7}$	TOTAL AREA

Kittery - Pre

Prepared by Hoyle, Tanner \& Associates, Inc.
HydroCAD® 10.00-23 s/n 00471 © 2018 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	Soil Group	Subcatchment Numbers
0	HSG A	
0	HSG B	
82,735	HSG C	$3 \mathrm{~A}, 3 \mathrm{~B}, 4,5$
$1,081,345$	HSG D	$1,2,3 \mathrm{~A}, 3 \mathrm{~B}, 4,5$
0	Other	
$\mathbf{1 , 1 6 4 , 0 8 0}$		TOTAL AREA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment1: Existing Woods/Gravel Runoff Area=248,415 sf 3.66\% Impervious Runoff Depth>1.44" Flow Length=675' Slope=0.0200 '/' Tc=15.9 min CN=81 Runoff=7.61 cfs 29,729 cf

Subcatchment2: Existing Woods/Gravel Runoff Area=28,605 sf 11.12% Impervious Runoff Depth >1.51 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff=$=1.23 \mathrm{cfs} 3,599 \mathrm{cf}$
Subcatchment3A: Existing Runoff Area=501,280 sf 0.00% Impervious Runoff Depth $>1.17^{\prime \prime}$ Flow Length=1,048' Slope=0.0120 '/' Tc=33.0 min CN=77 Runoff=9.16 cfs 49,018 cf

Subcatchment3B: Existing $\quad \begin{aligned} & \text { Runoff Area=280,890 sf } \quad 0.00 \% \text { Impervious Runoff Depth }>1.12 \text { " }\end{aligned}$

Subcatchment4: Existing Woods Runoff Area=13,320 sf 0.00% Impervious Runoff Depth >1.07 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=75$ Runoff $=0.40 \mathrm{cfs} 1,188 \mathrm{cf}$

Subcatchment5: Existing Woods
Runoff Area= 91,570 sf 0.00% Impervious Runoff Depth >0.96 "
Flow Length=435' Slope=0.0400 '/' Tc=10.0 min CN=73 Runoff=2.11 cfs 7,315 cf
Reach DP1: Design Point - Offsite Flow
Inflow=7.61 cfs 29,729 cf Outflow=7.61 cfs 29,729 cf

Reach DP2: Design Point - Offsite Flow	$\begin{aligned} & \text { Inflow=1.23 cfs } 3,599 \mathrm{cf} \\ & \text { Outflow }=1.23 \mathrm{cfs} \quad 3,599 \mathrm{cf} \end{aligned}$
Reach DP3: Design Point - Ditch	$\begin{aligned} & \text { Inflow }=13.69 \mathrm{cfs} 74,654 \mathrm{cf} \\ & \text { Outflow }=13.69 \mathrm{cfs} 74,654 \mathrm{cf} \end{aligned}$
Reach DP4: Design Point - Offsite Sheetflow	$\begin{gathered} \text { Inflow=0.40 cfs } \quad 1,188 \mathrm{cf} \\ \text { Outflow }=0.40 \mathrm{cfs} \\ 1,188 \mathrm{cf} \end{gathered}$
Reach DP5: Design Point - Offsite Sheetflow	Inflow $=2.11 \mathrm{cfs} 7,315 \mathrm{cf}$ Outflow=2.11 cfs 7,315 cf

Reach R3A: Swale Avg. Flow Depth=0.61' Max Vel=2.27 fps Inflow=9.14 cfs 48,953 cf n=0.040 L=375.0' $\mathrm{S}=0.0090$ '/' Capacity=21.09 cfs Outflow=9.08 cfs $48,686 \mathrm{cf}$

Reach R3B: Stream Avg. Flow Depth=0.74' Max Vel=3.92 fps Inflow=13.74 cfs 74,825 cf $\mathrm{n}=0.040 \mathrm{~L}=280.0$ ' $\mathrm{S}=0.0232$ '/' Capacity=46.72 cfs Outflow=13.69 cfs 74,654 cf

Pond P3A: 24" RCP
Peak Elev=55.23' Storage=783 cf Inflow=9.16 cfs 49,018 cf Outflow=9.14 cfs 48,953 cf

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment1: Existing Woods/Gravel Runoff Area=248,415 sf 3.66\% Impervious Runoff Depth>3.05" Flow Length=675' Slope=0.0200 '/' Tc=15.9 min CN=81 Runoff=16.10 cfs $63,187 \mathrm{cf}$
Subcatchment2: Existing Woods/Gravel Runoff Area=28,605 sf 11.12% Impervious Runoff Depth >3.16 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff= $2.53 \mathrm{cfs} 7,524 \mathrm{cf}$
Subcatchment3A: Existing Runoff Area=501,280 sf 0.00% Impervious Runoff Depth>2.67"
Subcatchment3B: Existing Runoff Area=280,890 sf 0.00% Impervious Runoff Depth>2.59"

Subcatchment4: Existing Woods Runoff Area=13,320 sf 0.00% Impervious Runoff Depth $>2.52^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=75$ Runoff $=0.95 \mathrm{cfs} 2,797 \mathrm{cf}$

Reach DP3: Design Point - Ditch	Inflow=30.41 cfs $171,330 \mathrm{cf}$ Outflow $=30.41 \mathrm{cfs} 171,330 \mathrm{cf}$
Reach DP4: Design Point - Offsite Sheetflow	Inflow $=0.95 \mathrm{cfs} 2,797 \mathrm{cf}$ Outflow $=0.95 \mathrm{cfs} 2,797 \mathrm{cf}$
Reach DP5: Design Point - Offsite Sheetflow	Inflow=5.37 cfs $17,895 \mathrm{cf}$ Ouflow=5.37 cfs 17,895 cf

Reach R3A: Swale	Avg. Flow Depth=0.96' Max Vel=2.95 fps Inflow=19.82 cfs $111,445 \mathrm{cf}$				
	$\mathrm{n}=0.040$	L=375.0' S=0.0090 $/$ /' Cap	apacity=21.09 cfs	Outfow=19.76 cfs	111,051 cf
Reach R3B: Stream	$\mathrm{n}=0.040$	Avg. Flow Depth=1.18' Max Vel=5.00 fps		Inflow=30.46 cfs	171,585 cf
		L=280.0' S=0.0232 '/' Capale	apacity $=46.72 \mathrm{cfs}$	Outlow=30.41 cfs	171,330 cf
Pond P3A: 24" RCP		Peak Elev=56.52	' ${ }^{\text {Storage }}=2,925 \mathrm{cf}$	Inflow=21.08 cfs	111,549 cf

Total Runoff Area $=1,164,080$ sf Runoff Volume $=263,487$ cf Average Runoff Depth $=2.72$ " 98.95% Pervious $=1,151,810$ sf 1.05% Impervious $=12,270$ sf

Summary for Subcatchment 1: Existing Woods/Gravel

Runoff $=16.10$ cfs @ 12.22 hrs, Volume $=\quad 63,187$ cf, Depth> 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	9,090	98 P	Paved parking, HSG D		
	56,450	91 G	Gravel roads, HSG D		
	165,185	77 V	Woods, Good, HSG D		
	17,690	73 B	Brush, Good, HSG D		
	248,415	81 V	Weighted Average		
	239,325		96.34\% Pervious Area		
	9,090		3.66\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.9	-675	0.0200	0.71		Lag/CN Met

Summary for Subcatchment 2: Existing Woods/Gravel

Runoff $=\quad 2.53$ cfs @ 12.09 hrs, Volume $=7,524$ cf, Depth> 3.16"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN D	Description
3,180	98 P	Paved parking, HSG D
7,650	91 G	Gravel roads, HSG D
12,175	77 V	Woods, Good, HSG D
5,600	73 B	Brush, Good, HSG D
28,605	82	Weighted Average
25,425		88.88\% Pervious Area
3,180		11.12\% Impervious Area
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)

Direct Entry,

Summary for Subcatchment 3A: Existing Woods/Meadow

Runoff $=\quad 21.08$ cfs @ 12.46 hrs, Volume= 111,549 cf, Depth> 2.67"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description		
11,730	91	Gravel roads, HSG D		
1,655	89	Gravel roads, HSG C		
421,340	77	Woods, Good, HSG D		
60,765	73	Brush, Good, HSG D		
5,790	65	Brush, Good, HSG C		
501,280	77	Weighted Average		
501,280	100.00% Pervious Area			
Tc	Length	Slope (ft/ft) Velocity (ft/sec) Capacity (min) (feet) Description 33.0 1,048 0.0120 0.53\quad Lag/CN Method,		

Summary for Subcatchment 3B: Existing Woods/Meadow

Runoff $=\quad 12.17$ cfs @ 12.41 hrs, Volume= 60,535 cf, Depth> 2.59"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

\(\left.$$
\begin{array}{rrrl}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array} & \begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array} & \begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}\end{array}
$$ \begin{array}{r}Capacity

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, |
| :--- |
| 6.0 |
| |
| |

Runoff $=\quad 5.37$ cfs @ 12.15 hrs, Volume $=17,895$ cf, Depth> $2.35{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
6,115	89	Gravel roads, HSG C
30,410	77	Woods, Good, HSG D
8,945	73	Brush, Good, HSG D
26,840	70	Woods, Good, HSG C
19,260	65	Brush, Good, HSG C
91,570	73	Weighted Average
91,570		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
10.0	435	0.0400	0.72	Lag/CN Method,	
			Summary for Reach DP1: Design Point - Offsite Flow		

Inflow Area	248,415 s	3.66\% Impervious,	Depth > 3.05" for 10-Yr event
Inflow	16.10 cfs @	12.22 hrs , Volume=	63,187 cf
Outflow	16.10 cfs @	12.22 hrs , Volume=	$63,187 \mathrm{cf}$, Atten $=0 \%, L a g=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach DP2: Design Point - Offsite Flow

Inflow Area	28,60	,	3.16" for
Inflow	2.53 cfs @	12.09 hrs , Volume=	7,524 cf
Outflow	2.53 cfs @	12.09 hrs , Volume=	$7,524 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach DP3: Design Point - Ditch

Inflow	782,170 sf,	0.00\% Impervious,	w Depth > 2.63" for 10-Yr event
Inflo	30.41 cfs @	12.52 hrs , Volume=	171,330 cf
Outflow	30.41 cfs @	12.52 hrs , Volume=	$171,330 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach DP4: Design Point - Offsite Sheetflow

Inflow Area $=$	$13,320 \mathrm{sf}$,	0.00% Impervious,	Inflow Depth > $2.52 "$	for $10-\mathrm{Yr}$ event
Inflow	$=$	$0.95 \mathrm{cfs} @$	12.09 hrs , Volume	$2,797 \mathrm{cf}$
Outflow	$=$	$0.95 \mathrm{cfs} @$	12.09 hrs , Volume $=$	$2,797 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach DP5: Design Point - Offsite Sheetflow

Inflow Area =	f,	0.00\% Impervious,	w Depth > 2.35" for 10-Yr event
Infl	5.37 cfs @	12.15 hrs , Volume=	17,895 cf
Outflow	5.37 cfs @	12.15 hrs , Volume=	17,895 cf, Atten= 0\%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span $=5.00-20.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Reach R3A: Swale

Inflow Area =	501,280	0.00\% Impervious,	w Depth > 2.67" for 10-Yr event
Inflo	19.82 cfs @	12.57 hrs , Volume=	111,445 cf
Outflow	19.76 cfs @	12.63 hrs , Volume=	111,051 cf, Atten= 0\%, Lag= 3.5 m

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity= 2.95 fps , Min. Travel Time $=2.1 \mathrm{~min}$
Avg. Velocity $=1.19 \mathrm{fps}$, Avg. Travel Time $=5.3 \mathrm{~min}$
Peak Storage= 2,515 cf @ 12.59 hrs
Average Depth at Peak Storage= 0.96'
Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 21.09 cfs
$6.00^{\prime} \times 1.00^{\prime}$ deep channel, $n=0.040$ Winding stream, pools \& shoals
Side Slope Z-value= 1.0 '/' Top Width= 8.00'
Length=375.0' Slope $=0.0090$ '/'
Inlet Invert= 53.36', Outlet Invert= 50.00'

Summary for Reach R3B: Stream

Inflow Area =	782,170 sf,	0.00\% Imperviou	ow Depth > 2.63" for $10-\mathrm{Yr}$ event
Inflow	30.46 cfs @	12.50 hrs , Volume=	171,585 cf
Outflow	30.41 cfs @	12.52 hrs , Volume=	171,330 cf, Atten= 0\%, Lag= 1.6 m

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity $=5.00 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.9 \mathrm{~min}$
Avg. Velocity $=2.14 \mathrm{fps}$, Avg. Travel Time $=2.2 \mathrm{~min}$
Peak Storage= 1,705cf @ 12.51 hrs
Average Depth at Peak Storage= 1.18'
Bank-Full Depth= 1.50' Flow Area= 8.3 sf, Capacity $=46.72$ cfs
4.00' x 1.50 ' deep channel, $n=0.040$ Winding stream, pools \& shoals

Side Slope Z-value= 1.0 '/' Top Width= 7.00'
Length= 280.0' Slope= 0.0232 '/'
Inlet Invert= 50.00', Outlet Invert= 43.50'

Summary for Pond P3A: 24" RCP

Inflow Area =	501,280 sf,	0.00\% Impervious,	Inflow Depth > 2.67" for 10-Yr event
Inflow	21.08 cfs @	12.46 hrs , Volume=	111,549 cf
Outflow	19.82 cfs @	12.57 hrs , Volume=	111,445 cf, Atten= 6\%, Lag= 6.3 min
Primary	19.82 cfs @	12.57 hrs , Volume=	111,445 cf

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=56.52' @ 12.57 hrs Surf.Area= 4,363 sf Storage= 2,925 cf
Flood Elev=58.00' Surf.Area= $8,060 \mathrm{sf}$ Storage $=6,552 \mathrm{cf}$
Plug-Flow detention time $=1.8 \mathrm{~min}$ calculated for $111,445 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time $=1.5 \mathrm{~min}(813.9-812.4)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	53.80^{\prime}	6,552 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
53.80	95	0	0
54.00	375	47	47
56.00	1,095	1,470	1,517
57.10	8,060	5,035	6,552

Device	Routing	Invert	Outlet Devices
\#1	Primary	53.80'	24.0" Round Culvert
			$\mathrm{L}=32.0{ }^{\prime} \mathrm{RCP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 53.80' / 53.36' S=0.0137 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#2	Primary	56.60'	30.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 0.5' Crest Height

[^1]Time span $=5.00-20.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 301$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment1: Existing Woods/Gravel Runoff Area=248,415 sf 3.66\% Impervious Runoff Depth>4.14" Flow Length=675' Slope=0.0200 '/' Tc=15.9 min CN=81 Runoff=21.62 cfs $85,658 \mathrm{cf}$

Subcatchment2: Existing Woods/Gravel Runoff Area=28,605 sf 11.12\% Impervious Runoff Depth >4.26 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff=3.36 cfs $10,145 \mathrm{cf}$

Subcatchment3A: Existing Runoff Area=501,280 sf 0.00% Impervious Runoff Depth>3.70" Flow Length=1,048' Slope=0.0120 '/' Tc=33.0 min CN=77 Runoff=29.07 cfs 154,642 cf

Subcatchment3B: Existing Runoff Area $=280,890$ sf 0.00% Impervious Runoff Depth $>3.61^{\prime \prime}$ Flow Length=760' Slope=0.0100 '/' Tc=28.8 min CN=76 Runoff=16.90 cfs 84,397 cf

Subcatchment4: Existing Woods Runoff Area=13,320 sf 0.00% Impervious Runoff Depth >3.53 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=75$ Runoff $=1.33 \mathrm{cfs} 3,920 \mathrm{cf}$

Reach DP1: Design Point - Offsite Flow Inflow=21.62 cfs 85,658 cf Outflow=21.62 cfs 85,658 cf

Reach DP2: Design Point - Offsite Flow Inflow=3.36 cfs 10,145 cf Outflow=3.36 cfs 10,145 cf

Reach DP3: Design Point - Ditch

Reach DP4: Design Point - Offsite Sheetflow

Reach DP5: Design Point - Offsite Sheetflow
Inflow=43.93 cfs 238,152 cf Outflow=43.93 cfs 238,152 cf

Inflow=1.33 cfs $3,920 \mathrm{cf}$ Outflow=1.33 cfs 3,920 cf

Inflow=7.61 cfs 25,390 cf Outflow=7.61 cfs 25,390 cf

Total Runoff Area $=1,164,080$ sf Runoff Volume $=364,151$ cf Average Runoff Depth $=3.75^{\prime \prime}$ $\mathbf{9 8 . 9 5 \%}$ Pervious $=1,151,810$ sf 1.05% Impervious $=12,270$ sf

Kittery - Post

Prepared by Hoyle, Tanner \& Associates, Inc.

Area Listing (all nodes)

Area $(\mathrm{sq-ft)}$	CN	Description (subcatchment-numbers)
25,900	79	$50-75 \%$ Grass cover, Fair, HSG C (3K, 3Q, 3R, 3T, 3U, 3V, 3X, 3Y, 3Z) 124,815
	84	$50-75 \%$ Grass cover, Fair, HSG D (1A, 1B, 1E, 1F, 1G, 1H, 1J, 1K, 1L, 2, 3AA, 3B1, 3B2, 3CC, 3DD, 3E, 3F, 3FF, 3G, 3H, 3I, 3J, 3K, 3L, 3M, 3O, 3Q, 3S, 3T, 3U, 3X, 3Y, 3Z)
3,740	73	Brush, Good, HSG D (2)
2,150	91	Gravel roads, HSG D (1A, 1B, 3B1, 3G)
4,070	71	Meadow, non-grazed, HSG C (5)
79,680	78	Meadow, non-grazed, HSG D (1A, 3A, 3B1, 3B2, 4, 5)
20,085	98	Paved parking, HSG C (3K, 3Q, 3R, 3T, 3U, 3V, 3X, 3Y, 3Z)
185,610	98	Paved parking, HSG D (1A, 1C, 1D, 1E, 1F, 1G, 1H, 1J, 1K, 1L, 2, 3AA, 3C,
		3CC, 3D, 3DD, 3E, 3F, 3FF, 3I, 3K, 3L, 3M, 3O, 3S, 3U, 3V, 3X, 3Y, 3Z)
32,680	98	Roofs, HSG C (3GG, 3HH, 3II, 3W)
47,770	98	Roofs, HSG D (1I, 1M, 3BB, 3EE, 3GG, 3II, 3N, 3P, 3W)
17,645	98	Water Surface, HSG D (1B, 3G, 3H)
619,935	77	Woods, Good, HSG D (1A, 2, 3A, 3B1, 3B2)
$1,164,080$	83	TOTAL AREA

Kittery - Post

Prepared by Hoyle, Tanner \& Associates, Inc.

Soil Listing (all nodes)

$\begin{array}{r} \text { Area } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Soil Group	Subcatchment Numbers
0	HSG A	
0	HSG B	
82,735	HSG C	3GG, 3HH, 3II, 3K, 3Q, 3R, 3T, 3U, 3V, 3W, 3X, 3Y, 3Z, 5
1,081,345	HSG D	$1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}, 1 \mathrm{G}, 1 \mathrm{H}, 1 \mathrm{I}, 1 \mathrm{~J}, 1 \mathrm{~K}, 1 \mathrm{~L}, 1 \mathrm{M}, 2,3 \mathrm{~A}, 3 \mathrm{AA}, 3 \mathrm{~B} 1,3 \mathrm{~B} 2$, 3BB, 3C, 3CC, 3D, 3DD, 3E, 3EE, 3F, 3FF, 3G, 3GG, 3H, 3I, 3II, 3J, 3K, 3L, 3M, 3N, 3O, 3P, 3Q, 3S, 3T, 3U, 3V, 3W, 3X, 3Y, 3Z, 4, 5
0	Other	
1,164,080		TOTAL AREA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: Road/Woods
 Subcatchment1B: Pond
 Subcatchment1C: Driveway

Flow Length=650'

Subcatchment1D: Driveway

Subcatchment1E: Grass

Subcatchment 1F: Parking

Subcatchment1G: Parking

Subcatchment 1H: Parking

Subcatchment1I: Garage

Subcatchment1J: Parking

Subcatchment1K: Parking

Subcatchment1L: Parking

Subcatchment 1M: Building 1

Subcatchment2: Woods

Subcatchment3A: Existing
Flow Length=1,048'
Subcatchment3AA: Parking

Runoff Area $=173,000$ sf 6.36% Impervious Runoff Depth >1.37 "
Slope $=0.0200 \mathrm{l} / \mathrm{Tc}=15.9 \mathrm{~min} \mathrm{CN}=80$ Runoff=5.02 cfs $19,747 \mathrm{cf}$
Runoff Area $=16,500$ sf 31.82% Impervious Runoff Depth >2.05 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=89$ Runoff=$=0.94 \mathrm{cfs} 2,818 \mathrm{cf}$

Runoff Area=7,830 sf 100.00% Impervious Runoff Depth >2.87 " Tc=6.0 min CN=98 Runoff=0.56 cfs 1,876 cf

Runoff Area $=7,000$ sf 100.00% Impervious Runoff Depth>2.87" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.50 \mathrm{cfs} 1,677 \mathrm{cf}$

Runoff Area=9,355 sf 40.51% Impervious Runoff Depth >2.14 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=90$ Runoff $=0.55 \mathrm{cfs} 1,665 \mathrm{cf}$

Runoff Area=6,145 sf 96.99% Impervious Runoff Depth $>2.87{ }^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.44 \mathrm{cfs} 1,472 \mathrm{cf}$

Runoff Area=8,390 sf 93.56% Impervious Runoff Depth>2.79" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.60 \mathrm{cfs} 1,949 \mathrm{cf}$

Runoff Area $=4,965$ sf 90.33% Impervious Runoff Depth >2.79 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.35 \mathrm{cfs} 1,153 \mathrm{cf}$

Runoff Area=1,650 sf 100.00% Impervious Runoff Depth>2.87" Tc=6.0 min CN=98 Runoff=0.12 cfs 395 cf

Runoff Area=2,655 sf 91.71% Impervious Runoff Depth >2.79 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.19 \mathrm{cfs} 617 \mathrm{cf}$

Runoff Area $=8,155$ sf 90.93% Impervious Runoff Depth >2.79 " Tc=6.0 min CN=97 Runoff $=0.58$ cfs $1,895 \mathrm{cf}$

Runoff Area=13,905 sf 93.53% Impervious Runoff Depth>2.79" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff=0.99 cfs $3,230 \mathrm{cf}$

Runoff Area=15,400 sf 100.00% Impervious Runoff Depth $>2.87^{\prime \prime}$ Tc=6.0 min CN=98 Runoff=1.11 cfs 3,689 cf

Runoff Area=24,540 sf 9.56% Impervious Runoff Depth $>1.37^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff $=0.96 \mathrm{cfs} 2,812 \mathrm{cf}$

Runoff Area $=437,860$ sf 0.00% Impervious Runoff Depth >1.17 " Slope=0.0120 '/' Tc=33.0 min CN=77 Runoff=8.00 cfs $42,816 \mathrm{cf}$

Runoff Area $=5,550$ sf 86.67% Impervious Runoff Depth $>2.70^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=96$ Runoff $=0.39 \mathrm{cfs} 1,247 \mathrm{cf}$

Subcatchment3B1: Woods
Flow Length=698'

Subcatchment3B2: Woods

Flow Length=326'
Subcatchment3BB: Garage

Subcatchment3C: Driveway

Subcatchment3CC: Parking

Subcatchment3D: Driveway

Subcatchment3DD: Parking

Subcatchment3E: Driveway

Subcatchment3EE: Building 4

Subcatchment3F: Driveway

Subcatchment3FF: Courtyard

Subcatchment3G: Pond

Subcatchment3GG: Buiilding 2A

Subcatchment3H: Pond

Subcatchment3HH: Building 2B

Subcatchment31: Parking

Subcatchment3II: Building 3

Runoff Area=55,645 sf 0.00% Impervious Runoff Depth>1.30" Slope=0.0100 '/' Tc=24.6 min CN=79 Runoff=1.29 cfs 6,032 cf

Runoff Area=68,025 sf 0.00% Impervious Runoff Depth>1.25" Slope=0.0350 '/' Tc=7.4 min CN=78 Runoff=2.29 cfs 7,068 cf

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth >2.87 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.12 \mathrm{cfs} 395 \mathrm{cf}$

Runoff Area=7,340 sf 100.00% Impervious Runoff Depth>2.87" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff= $0.53 \mathrm{cfs} 1,758 \mathrm{cf}$

Runoff Area $=6,850$ sf 91.61% Impervious Runoff Depth >2.79 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff=$=0.49 \mathrm{cfs} 1,591 \mathrm{cf}$

Runoff Area $=4,930$ sf 100.00% Impervious Runoff Depth >2.87 " Tc=6.0 min CN=98 Runoff=0.36 cfs $1,181 \mathrm{cf}$

Runoff Area $=5,040$ sf 82.54% Impervious Runoff Depth >2.70 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=0.35 \mathrm{cfs} 1,132 \mathrm{cf}$

Runoff Area $=3,040$ sf 99.01% Impervious Runoff Depth >2.87 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.22 \mathrm{cfs} 728 \mathrm{cf}$

Runoff Area $=5,350$ sf 100.00% Impervious Runoff Depth >2.87 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.39 \mathrm{cfs} 1,282 \mathrm{cf}$

Runoff Area=2,305 sf 98.70\% Impervious Runoff Depth>2.87" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.17 \mathrm{cfs} 552 \mathrm{cf}$

Runoff Area $=2,915$ sf 13.55% Impervious Runoff Depth >1.80 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=86$ Runoff $=0.15 \mathrm{cfs} 438 \mathrm{cf}$

Runoff Area $=15,950$ sf 26.39% Impervious Runoff Depth $>1.97{ }^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff=$=0.88 \mathrm{cfs} 2,612 \mathrm{cf}$

Runoff Area=16,625 sf 100.00% Impervious Runoff Depth>2.87" Tc=6.0 min CN=98 Runoff=1.20 cfs 3,982 cf

Runoff Area=22,660 sf 36.12% Impervious Runoff Depth>2.05" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=89$ Runoff $=1.29 \mathrm{cfs} 3,870 \mathrm{cf}$

Runoff Area $=15,225$ sf 100.00% Impervious Runoff Depth >2.87 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=1.10 \mathrm{cfs} 3,647 \mathrm{cf}$

Runoff Area $=13,150$ sf 86.69% Impervious Runoff Depth >2.70 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=96$ Runoff $=0.92 \mathrm{cfs} 2,954 \mathrm{cf}$

Runoff Area=19,600 sf 100.00% Impervious Runoff Depth>2.87" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=1.41 cfs $4,695 \mathrm{cf}$

Subcatchment3J: Courtyard

Subcatchment3K: Courtyard

Subcatchment3L: Parking

Subcatchment3M: Parking

Subcatchment3N: Garage

Subcatchment30: Parking

Subcatchment3P: Garage

Subcatchment3Q: Courtyard

Subcatchment3R: Courtyard

Subcatchment3S: Parking

Subcatchment3T: Courtyard

Subcatchment3U: Parking

Subcatchment3V: Parking

Subcatchment3W: Garage

Subcatchment3X: Parking

Subcatchment3Y: Parking

Subcatchment3Z: Parking

Runoff Area=2,815 sf 0.00% Impervious Runoff Depth>1.65" Tc=6.0 min CN=84 Runoff=0.13 cfs 388 cf

Runoff Area $=14,820$ sf 41.33% Impervious Runoff Depth >2.14 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=90$ Runoff $=0.88 \mathrm{cfs} 2,638 \mathrm{cf}$

Runoff Area $=10,540$ sf 98.77% Impervious Runoff Depth >2.87 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.76 \mathrm{cfs} 2,525 \mathrm{cf}$

Runoff Area=5,530 sf 92.95% Impervious Runoff Depth>2.79" Tc=6.0 min CN=97 Runoff $=0.39$ cfs $1,285 \mathrm{cf}$

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth>2.87" Tc=6.0 min CN=98 Runoff=0.12 cfs 395 cf

Runoff Area $=5,540$ sf 84.84% Impervious Runoff Depth $>2.70^{\prime \prime}$ Tc=6.0 min CN=96 Runoff $=0.39$ cfs $1,244 \mathrm{cf}$

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth >2.87 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff $=0.12 \mathrm{cfs} 395 \mathrm{cf}$

Runoff Area $=10,030$ sf 25.02% Impervious Runoff Depth >1.65 " Tc=6.0 min CN=84 Runoff=0.47 cfs $1,382 \mathrm{cf}$

Runoff Area=7,980 sf 24.56% Impervious Runoff Depth >1.65 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=84$ Runoff=0.37 cfs $1,099 \mathrm{cf}$

Runoff Area=9,495 sf 84.41% Impervious Runoff Depth>2.70" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff=$=0.66 \mathrm{cfs} 2,133 \mathrm{cf}$

Runoff Area=9,055 sf 14.96% Impervious Runoff Depth $>1.51^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff $=0.39 \mathrm{cfs} 1,139 \mathrm{cf}$

Runoff Area=12,055 sf 94.90% Impervious Runoff Depth>2.79" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff=$=0.86 \mathrm{cfs} 2,801 \mathrm{cf}$

Runoff Area=6,415 sf 78.02\% Impervious Runoff Depth>2.51" Tc=6.0 min CN=94 Runoff=0.43 cfs $1,339 \mathrm{cf}$

Runoff Area=1,650 sf 100.00\% Impervious Runoff Depth>2.87" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.12 \mathrm{cfs} 395 \mathrm{cf}$

Runoff Area $=12,600$ sf 88.65% Impervious Runoff Depth $>2.70^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff=$=0.88 \mathrm{cfs} 2,830 \mathrm{cf}$

Runoff Area $=11,630$ sf 90.07% Impervious Runoff Depth >2.70 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff=$=0.81 \mathrm{cfs} 2,612 \mathrm{cf}$

Runoff Area $=11,020$ sf 87.89% Impervious Runoff Depth >2.70 " Tc=6.0 $\mathrm{min} \quad \mathrm{CN}=96$ Runoff $=0.77 \mathrm{cfs} 2,475 \mathrm{cf}$

Subcatchment5: Woods
 Reach DP1: Design Point - Offsite Flow
 Reach DP2: Design Point - Offsite Flow

Runoff Area $=1,535$ sf 0.00% Impervious Runoff Depth>1.25" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=78$ Runoff $=0.05 \mathrm{cfs} 160 \mathrm{cf}$

Runoff Area $=18,870$ sf $\quad 0.00 \%$ Impervious Runoff Depth >1.13 " Flow Length=295' Tc=10.3 min CN=76 Runoff=0.52 cfs $1,770 \mathrm{cf}$

Reach DP3: Design Point - Stream

Inflow=5.77 cfs 33,892 cf Outflow $=5.77$ cfs $33,892 \mathrm{cf}$

Inflow=0.96 cfs 2,812 cf Outflow=0.96 cfs 2,812 cf

Inflow=12.39 cfs $92,576 \mathrm{cf}$ Outflow=12.39 cfs 92,576 cf

Inflow=0.05 cfs 160 cf Outflow $=0.05$ cfs 160 cf

Inflow=0.52 cfs $1,770 \mathrm{cf}$ Outflow=0.52 cfs $1,770 \mathrm{cf}$

Reach R3A: Swale Avg. Flow Depth=0.56' Max Vel=2.16 fps Inflow=8.00 cfs $42,721 \mathrm{cf}$ $\mathrm{n}=0.040 \mathrm{~L}=375.0$ ' $\mathrm{S}=0.0089$ '/' Capacity=21.06 cfs Outflow=7.95 cfs $42,475 \mathrm{cf}$

Reach R3B: Stream Avg. Flow Depth=0.70' Max Vel=3.79 fps Inflow=12.43 cfs $92,798 \mathrm{cf}$ $\mathrm{n}=0.040 \mathrm{~L}=280.0$ ' $\mathrm{S}=0.0232$ '/' Capacity=46.72 cfs Outflow=12.39 cfs $92,576 \mathrm{cf}$

Pond CB1: Prop CB

Pond CB10: Prop CB

Pond CB11: Prop CB

Pond CB12: Prop CB

Pond CB13: Prop CB

Pond CB14: Prop CB

Pond CB15: Prop CB

Pond CB16: Prop CB

Peak Elev=56.67' Inflow=0.50 cfs 1,677 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=18.0$ ' $\mathrm{S}=0.0056$ '/' Outflow $=0.50 \mathrm{cfs} 1,677 \mathrm{cf}$

Peak Elev=55.13' Inflow=0.53 cfs 1,758 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=18.0^{\prime} \mathrm{S}=0.0056$ '//' Outflow=0.53 cfs $1,758 \mathrm{cf}$

Peak Elev=55.00' Inflow=0.88 cfs 2,939 cf 12.0" Round Culvert n=0.012 L=150.0' $\mathrm{S}=0.0067$ '/' Outflow=0.88 cfs 2,939 cf

Peak Elev=55.26' Inflow=0.49 cfs 1,591 cf 12.0" Round Culvert n=0.012 L=30.0' S=0.0050 '/' Outflow=0.49 cfs 1,591 cf

Peak Elev=55.13' Inflow=0.84 cfs 2,723 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=69.0^{\prime} \mathrm{S}=0.0051$ '/' Outflow=0.84 cfs $2,723 \mathrm{cf}$

Peak Elev=54.58' Inflow=1.06 cfs 3,452 cf 15.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=18.0$ ' $\mathrm{S}=0.0056$ '/' Outflow=1.06 cfs $3,452 \mathrm{cf}$

Peak Elev=54.66' Inflow=3.31 cfs 10,733 cf 18.0" Round Culvert $n=0.012$ L=24.0' $S=0.0062$ '/' Outflow=3.31 cfs 10,733 cf

Peak Elev=57.11' Inflow=0.81 cfs 2,612 cf 12.0" Round Culvert n=0.012 L=145.0' S=0.0052 '/' Outflow=0.81 cfs 2,612 cf

Pond CB17: Prop CB

Pond CB18: Prop CB

Pond CB19: Prop CB

Pond CB2: Prop CB

Pond CB20: Prop CB

Pond CB21: Prop CB

Pond CB22: Prop CB

Pond CB23: Prop CB

Pond CB24: Prop CB

Pond CB25: Prop CB

Pond CB26: Prop CB

Pond CB27: Prop CB

Pond CB28: Prop CB

Pond CB29: Prop CB

Pond CB3: Prop CB

Pond CB30: Prop CB

Pond CB31: Prop CB

Peak Elev=56.27' Inflow=1.58 cfs 5,088 cf 15.0" Round Culvert $n=0.012$ L=115.0' $S=0.0052$ '/' Outflow=1.58 cfs 5,088 cf

Peak Elev=55.69' Inflow=2.09 cfs 6,729 cf 15.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=202.0$ ' $\mathrm{S}=0.0050$ '/' Outflow=2.09 cfs $6,729 \mathrm{cf}$

Peak Elev=56.45' Inflow=1.47 cfs 4,746 cf 15.0" Round Culvert $n=0.012 \mathrm{~L}=122.0$ ' $\mathrm{S}=0.0049$ '/' Outflow=1.47 cfs $4,746 \mathrm{cf}$

Peak Elev=56.58' Inflow=1.62 cfs 5,218 cf 15.0" Round Culvert n=0.012 L=151.0' $\mathrm{S}=0.0050$ '/' Outflow=1.62 cfs $5,218 \mathrm{cf}$

Peak Elev=55.83' Inflow=3.14 cfs 10,110 cf 18.0" Round Culvert n=0.012 L=94.0' S=0.0069'/' Outflow=3.14 cfs 10,110 cf

Peak Elev=56.67' Inflow=0.53 cfs 1,720 cf 12.0" Round Culvert $\mathrm{n}=0.012$ L=93.0' $\mathrm{S}=0.0172$ '/' Outflow=0.53 cfs 1,720 cf

Peak Elev=55.97' Inflow=0.13 cfs 388 cf 12.0" Round Culvert $n=0.012$ L=73.0' S=0.0247 '/' Outflow=0.13 cfs 388 cf

Peak Elev=54.21' Inflow=4.55 cfs 14,468 cf 24.0" Round Culvert n=0.012 L=79.0' S=0.0215 '/' Outflow=4.55 cfs 14,468 cf

Peak Elev=54.43' Inflow=1.05 cfs 3,341 cf 12.0" Round Culvert n=0.012 L=124.0' S=0.0105 '/' Outflow=1.05 cfs 3,341 cf

Peak Elev=52.24' Inflow=12.12 cfs 38,986 cf 36.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=20.0^{\prime} \mathrm{S}=0.0050$ '/' Outflow=12.12 cfs 38,986 cf

Peak Elev=57.24' Inflow=0.88 cfs 2,830 cf 12.0" Round Culvert $n=0.012$ L=110.0' $S=0.0050$ '/' Outflow=0.88 cfs 2,830 cf

Peak Elev=56.54' Inflow=1.43 cfs 4,565 cf 15.0" Round Culvert $n=0.012$ L=154.0' $S=0.0049$ '/' Outflow=1.43 cfs 4,565 cf

Peak Elev=56.14' Inflow=0.39 cfs 1,139 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=73.0$ ' $\mathrm{S}=0.0055$ '/' Outflow=0.39 cfs $1,139 \mathrm{cf}$

Peak Elev=55.73' Inflow=2.67 cfs 8,505 cf 18.0" Round Culvert $n=0.012$ L=182.0' $S=0.0049$ '//' Outflow=2.67 cfs 8,505 cf

Peak Elev=56.69' Inflow=0.55 cfs 1,665 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=20.0^{\prime} \mathrm{S}=0.0050$ '/' Outflow=0.55 cfs $1,665 \mathrm{cf}$

Peak Elev=54.85' Inflow=3.33 cfs 10,637 cf 18.0" Round Culvert n=0.012 L=135.0' $S=0.0052$ '/' Outflow=3.33 cfs 10,637 cf

Peak Elev=53.81' Inflow=5.25 cfs 16,972 cf 24.0" Round Culvert n=0.012 L=86.0' S=0.0052 '/' Outflow=5.25 cfs 16,972 cf

Pond CB32: Prop CB

Pond CB4: Prop CB

Pond CB5: Prop CB

Pond CB6: Prop CB

Pond CB7: Prop CB

Pond CB8: Prop CB

Pond CB9: Prop CB

Pond DMH1: Prop DMH

Pond DMH2: Prop DMH

Pond DMH3: Prop DMH

Pond P1: Wet Pond 1

Pond P2: Wet Pond 2

Pond P3: Wet Pond 3

Peak Elev=53.31' Inflow=5.76 cfs 18,652 cf
24.0" Round Culvert $n=0.012$ L=110.0' $S=0.0050$ '/' Outflow=5.76 cfs 18,652 cf

Peak Elev=55.95' Inflow=3.72 cfs 12,137 cf 18.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=80.0$ ' $\mathrm{S}=0.0050$ '//' Outflow=3.72 cfs $12,137 \mathrm{cf}$

Peak Elev=57.19' Inflow=0.44 cfs 1,472 cf
12.0" Round Culvert $n=0.012$ L=7.0' $S=0.0071$ '/' Outflow=0.44 cfs 1,472 cf

Peak Elev=57.24' Inflow=1.04 cfs 3,421 cf 12.0" Round Culvert n=0.012 L=152.0' $\mathrm{S}=0.0049$ '/' Outflow=1.04 cfs $3,421 \mathrm{cf}$

Peak Elev=56.31' Inflow=1.51 cfs 4,970 cf 15.0" Round Culvert n=0.012 L=125.0' S=0.0052 '/' Outflow=1.51 cfs $4,970 \mathrm{cf}$

Peak Elev=55.57' Inflow=2.28 cfs 7,481 cf 18.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=60.0^{\prime} \mathrm{S}=0.0042$ '/' Outflow=2.28 cfs 7,481 cf

Peak Elev=55.99' Inflow=0.19 cfs 617 cf 12.0" Round Culvert n=0.012 L=94.0' S=0.0053 '/' Outflow=0.19 cfs 617 cf

Peak Elev=55.25' Inflow=3.67 cfs 11,830 cf 18.0" Round Culvert $n=0.012$ L=56.0' $S=0.0054$ '/' Outflow=3.67 cfs 11,830 cf

Peak Elev=49.06' Inflow=0.43 cfs 9,313 cf 24.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=55.0^{\prime} \mathrm{S}=0.0382$ '/' Outflow=0.43 cfs $9,313 \mathrm{cf}$

Peak Elev=46.86' Inflow=0.43 cfs 9,313 cf 24.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=13.0$ ' $\mathrm{S}=0.0154$ '/' Outflow=0.43 cfs 9,313 cf

Peak Elev=54.95' Storage=12,518 cf Inflow=6.94 cfs 22,436 cf Outflow=1.15 cfs 14,146 cf

Peak Elev=53.84' Storage=9,898 cf Inflow=5.07 cfs 16,285 cf Outflow=0.43 cfs 9,313 cf

Peak Elev=51.30' Storage=23,239 cf Inflow=13.41 cfs 42,856 cf Outflow=2.49 cfs 27,910 cf

Pond P3A: 36" RCP

Peak Elev=55.25' Storage=325 cf Inflow=8.00 cfs 42,816 cf 36.0" Round Culvert w/ 6.0" inside fill $\mathrm{n}=0.012 \mathrm{~L}=50.0^{\prime} \mathrm{S}=0.0090$ '/' Outflow=8.00 cfs $42,721 \mathrm{cf}$

Total Runoff Area $=1,164,080$ sf Runoff Volume $=161,981$ cf Average Runoff Depth $=1.67$ "
73.90\% Pervious $=\mathbf{8 6 0 , 2 9 0}$ sf $\mathbf{2 6 . 1 0 \%}$ Impervious $=303,790$ sf

Time span $=5.00-20.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 301$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: Road/Woods
 Flow Length=650'

Subcatchment1B: Pond

Subcatchment1C: Driveway

Subcatchment1D: Driveway

Subcatchment1E: Grass

Subcatchment 1F: Parking

Subcatchment1G: Parking

Subcatchment1H: Parking

Subcatchment 11: Garage

Subcatchment1J: Parking

Subcatchment1K: Parking

Subcatchment1L: Parking

Subcatchment 1M: Building 1

Subcatchment2: Woods

Subcatchment3A: Existing

Subcatchment3AA: Parking

Flow Length=1,048' Slope=0.0120 '/' Tc=33.0 min CN=77 Runoff=18.42 cfs $97,437 \mathrm{cf}$

Runoff Area $=173,000$ sf 6.36% Impervious Runoff Depth>2.96" Slope=0.0200 '/' Tc=15.9 min CN=80 Runoff=10.89 cfs $42,659 \mathrm{cf}$

Runoff Area $=16,500$ sf 31.82% Impervious Runoff Depth >3.85 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=89$ Runoff $=1.71 \mathrm{cfs} 5,298 \mathrm{cf}$

Runoff Area $=7,830$ sf 100.00% Impervious Runoff Depth >4.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.91 \mathrm{cfs} 3,073 \mathrm{cf}$

Runoff Area $=7,000$ sf 100.00% Impervious Runoff Depth $>4.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=0.82 cfs $2,748 \mathrm{cf}$

Runoff Area=9,355 sf 40.51% Impervious Runoff Depth $>3.96{ }^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=90$ Runoff $=0.99 \mathrm{cfs} 3,084 \mathrm{cf}$

Runoff Area=6,145 sf 96.99% Impervious Runoff Depth $>4.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.72 \mathrm{cfs} 2,412 \mathrm{cf}$

Runoff Area=8,390 sf 93.56% Impervious Runoff Depth >4.63 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.97$ cfs $3,240 \mathrm{cf}$

Runoff Area $=4,965$ sf 90.33% Impervious Runoff Depth >4.63 " Tc=6.0 min CN=97 Runoff $=0.58$ cfs $1,918 \mathrm{cf}$

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth $>4.71^{\prime \prime}$ Tc=6.0 min CN=98 Runoff=0.19 cfs 648 cf

Runoff Area $=2,655$ sf 91.71% Impervious Runoff Depth >4.63 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.31 \mathrm{cfs} 1,025 \mathrm{cf}$

Runoff Area $=8,155$ sf 90.93% Impervious Runoff Depth >4.63 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.95 \mathrm{cfs} 3,150 \mathrm{cf}$

Runoff Area=13,905 sf 93.53% Impervious Runoff Depth >4.63 " Tc=6.0 min CN=97 Runoff=1.61 cfs 5,370 cf

Runoff Area $=15,400$ sf 100.00% Impervious Runoff Depth >4.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=1.80 cfs $6,045 \mathrm{cf}$

Runoff Area=24,540 sf 9.56% Impervious Runoff Depth $>2.97{ }^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff $=2.05 \mathrm{cfs} 6,071 \mathrm{cf}$

Runoff Area $=437,860$ sf 0.00% Impervious Runoff Depth >2.67 "

Runoff Area $=5,550$ sf 86.67% Impervious Runoff Depth >4.55 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=0.64 \mathrm{cfs} 2,104 \mathrm{cf}$

Subcatchment3B1: Woods
Flow Length=698'

Subcatchment3B2: Woods

Flow Length=326'
Subcatchment3BB: Garage

Subcatchment3C: Driveway

Subcatchment3CC: Parking

Subcatchment3D: Driveway

Subcatchment3DD: Parking

Subcatchment3E: Driveway

Subcatchment3EE: Building 4

Subcatchment3F: Driveway

Subcatchment3FF: Courtyard

Subcatchment3G: Pond

Subcatchment3GG: Buiilding 2A

Subcatchment3H: Pond

Subcatchment3HH: Building 2B

Subcatchment31: Parking

Subcatchment3II: Building 3

Runoff Area=55,645 sf 0.00% Impervious Runoff Depth>2.86" Slope=0.0100 '/' Tc=24.6 min CN=79 Runoff=2.84 cfs 13,256 cf

Runoff Area=68,025 sf 0.00% Impervious Runoff Depth>2.78" Slope=0.0350 '/' Tc=7.4 min CN=78 Runoff=5.14 cfs 15,782 cf

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth >4.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.19 \mathrm{cfs} 648 \mathrm{cf}$

Runoff Area $=7,340$ sf 100.00% Impervious Runoff Depth $>4.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.86 \mathrm{cfs} 2,881 \mathrm{cf}$

Runoff Area=6,850 sf 91.61% Impervious Runoff Depth>4.63" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.79 \mathrm{cfs} 2,646 \mathrm{cf}$

Runoff Area $=4,930$ sf 100.00% Impervious Runoff Depth >4.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.58 \mathrm{cfs} 1,935 \mathrm{cf}$

Runoff Area $=5,040$ sf 82.54% Impervious Runoff Depth $>4.55^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=0.58 \mathrm{cfs} 1,910 \mathrm{cf}$

Runoff Area=3,040 sf 99.01% Impervious Runoff Depth >4.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.35 \mathrm{cfs} 1,193 \mathrm{cf}$

Runoff Area $=5,350$ sf 100.00% Impervious Runoff Depth >4.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.62 \mathrm{cfs} 2,100 \mathrm{cf}$

Runoff Area $=2,305$ sf 98.70% Impervious Runoff Depth $>4.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.27 \mathrm{cfs} 905 \mathrm{cf}$

Runoff Area $=2,915$ sf 13.55% Impervious Runoff Depth $>3.55^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=86$ Runoff= 0.28 cfs 862 cf

Runoff Area $=15,950$ sf 26.39% Impervious Runoff Depth >3.75 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff $=1.62 \mathrm{cfs} 4,986 \mathrm{cf}$

Runoff Area=16,625 sf 100.00% Impervious Runoff Depth >4.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=1.94 \mathrm{cfs} 6,526 \mathrm{cf}$

Runoff Area=22,660 sf 36.12% Impervious Runoff Depth>3.85" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=89$ Runoff $=2.35 \mathrm{cfs} 7,276 \mathrm{cf}$

Runoff Area=15,225 sf 100.00% Impervious Runoff Depth $>4.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff= $1.78 \mathrm{cfs} 5,976 \mathrm{cf}$

Runoff Area $=13,150$ sf 86.69% Impervious Runoff Depth >4.55 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=1.51 \mathrm{cfs} 4,984 \mathrm{cf}$

Runoff Area=19,600 sf 100.00% Impervious Runoff Depth>4.71" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=2.29 cfs 7,693 cf

Subcatchment3J: Courtyard

Subcatchment3K: Courtyard

Subcatchment3L: Parking

Subcatchment3M: Parking

Subcatchment3N: Garage

Subcatchment30: Parking

Subcatchment3P: Garage

Subcatchment3Q: Courtyard

Subcatchment3R: Courtyard

Subcatchment3S: Parking

Subcatchment3T: Courtyard

Subcatchment3U: Parking

Subcatchment3V: Parking

Subcatchment3W: Garage

Subcatchment3X: Parking

Subcatchment3Y: Parking

Subcatchment3Z: Parking

Runoff Area=2,815 sf 0.00% Impervious Runoff Depth>3.35" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=84$ Runoff=0.26 cfs 786 cf

Runoff Area $=14,820$ sf 41.33% Impervious Runoff Depth >3.96 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=90$ Runoff $=1.57 \mathrm{cfs} 4,885 \mathrm{cf}$

Runoff Area $=10,540$ sf 98.77% Impervious Runoff Depth $>4.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff=$=1.23 \mathrm{cfs} 4,137 \mathrm{cf}$

Runoff Area=5,530 sf 92.95% Impervious Runoff Depth >4.63 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.64 \mathrm{cfs} 2,136 \mathrm{cf}$

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth $>4.71^{\prime \prime}$ Tc=6.0 min CN=98 Runoff=0.19 cfs 648 cf

Runoff Area $=5,540$ sf 84.84% Impervious Runoff Depth $>4.55^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=0.64 \mathrm{cfs} 2,100 \mathrm{cf}$

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth >4.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=0.19 cfs 648 cf

Runoff Area $=10,030$ sf 25.02% Impervious Runoff Depth >3.35 " Tc=6.0 $\mathrm{min} \mathrm{CN}=84$ Runoff $=0.93$ cfs $2,800 \mathrm{cf}$

Runoff Area=7,980 sf 24.56% Impervious Runoff Depth >3.35 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=84$ Runoff $=0.74 \mathrm{cfs} 2,228 \mathrm{cf}$

Runoff Area=9,495 sf 84.41% Impervious Runoff Depth>4.55" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff= $1.09 \mathrm{cfs} 3,599 \mathrm{cf}$

Runoff Area $=9,055$ sf 14.96% Impervious Runoff Depth >3.16 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff $=0.80 \mathrm{cfs} 2,382 \mathrm{cf}$

Runoff Area=12,055 sf 94.90% Impervious Runoff Depth >4.63 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=1.40 \mathrm{cfs} 4,656 \mathrm{cf}$

Runoff Area=6,415 sf 78.02\% Impervious Runoff Depth>4.36" $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=94$ Runoff $=0.72 \mathrm{cfs} 2,330 \mathrm{cf}$

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth $>4.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.19 \mathrm{cfs} 648 \mathrm{cf}$

Runoff Area $=12,600$ sf 88.65% Impervious Runoff Depth >4.55 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff=$=1.45 \mathrm{cfs} 4,776 \mathrm{cf}$

Runoff Area $=11,630$ sf 90.07% Impervious Runoff Depth $>4.55^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=96$ Runoff $=1.34 \mathrm{cfs} 4,408 \mathrm{cf}$

Runoff Area $=11,020$ sf 87.89% Impervious Runoff Depth >4.55 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=96$ Runoff=1.27 cfs $4,177 \mathrm{cf}$

Runoff Area $=1,535$ sf 0.00% Impervious Runoff Depth>2.79" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=78$ Runoff $=0.12 \mathrm{cfs} 356 \mathrm{cf}$

Runoff Area $=18,870$ sf 0.00% Impervious Runoff Depth >2.60 " Flow Length=295' Tc=10.3 min CN=76 Runoff=1.22 cfs $4,093 \mathrm{cf}$

Reach DP1: Design Point - Offsite Flow

Reach DP2: Design Point - Offsite Flow

Reach DP3: Design Point - Stream

Inflow=14.04 cfs $71,907 \mathrm{cf}$
Outflow=14.04 cfs 71,907 cf
Inflow=2.05 cfs 6,071 cf Outflow=2.05 cfs 6,071 cf

Inflow=29.86 cfs 202,839 cf Outflow=29.86 cfs 202,839 cf

Inflow=0.12 cfs 356 cf Outflow=0.12 cfs 356 cf

Inflow=1.22 cfs 4,093 cf Outflow=1.22 cfs 4,093 cf

Reach R3A: Swale Avg. Flow Depth=0.92' Max Vel=2.88 fps Inflow=18.41 cfs $97,328 \mathrm{cf}$ $\mathrm{n}=0.040 \mathrm{~L}=375.0$ ' $\mathrm{S}=0.0089$ '/' Capacity=21.06 cfs Outflow=18.29 cfs $96,966 \mathrm{cf}$

Reach R3B: Stream Avg. Flow Depth=1.16' Max Vel=4.98 fps Inflow=29.94 cfs 203,169 cf n=0.040 L=280.0' S=0.0232 '/' Capacity=46.72 cfs Outflow=29.86 cfs 202,839 cf

Pond CB1: Prop CB

Pond CB10: Prop CB

Pond CB11: Prop CB

Pond CB12: Prop CB

Pond CB13: Prop CB

Pond CB14: Prop CB

Pond CB15: Prop CB

Pond CB16: Prop CB

Peak Elev=56.80' Inflow=0.82 cfs 2,748 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=18.0$ ' $\mathrm{S}=0.0056$ '//' Outflow=0.82 cfs $2,748 \mathrm{cf}$

Peak Elev=55.26' Inflow=0.86 cfs 2,881 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=18.0$ ' $\mathrm{S}=0.0056$ '//' Outflow=0.86 cfs $2,881 \mathrm{cf}$

Peak Elev=55.16' Inflow=1.43 cfs 4,816 cf 12.0" Round Culvert n=0.012 L=150.0' $\mathrm{S}=0.0067$ '/' Outflow=1.43 cfs 4,816 cf

Peak Elev=55.38' Inflow=0.79 cfs 2,646 cf 12.0" Round Culvert n=0.012 L=30.0' S=0.0050 '/' Outflow=0.79 cfs 2,646 cf

Peak Elev=55.31' Inflow=1.37 cfs 4,556 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=69.0$ ' $\mathrm{S}=0.0051$ '/' Outflow=1.37 cfs $4,556 \mathrm{cf}$

Peak Elev=54.76' Inflow=1.73 cfs 5,749 cf 15.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=18.0$ ' $\mathrm{S}=0.0056$ '//' Outflow=1.73 cfs $5,749 \mathrm{cf}$

Peak Elev=55.02' Inflow=5.44 cfs 17,990 cf 18.0" Round Culvert n=0.012 L=24.0' $\mathrm{S}=0.0062$ '/' Outflow=5.44 cfs 17,990 cf

Peak Elev=57.28' Inflow=1.34 cfs 4,408 cf 12.0" Round Culvert n=0.012 L=145.0' $\mathrm{S}=0.0052$ '/' Outflow=1.34 cfs $4,408 \mathrm{cf}$

Pond CB17: Prop CB

Pond CB18: Prop CB

Pond CB19: Prop CB

Pond CB2: Prop CB

Pond CB20: Prop CB

Pond CB21: Prop CB

Pond CB22: Prop CB

Pond CB23: Prop CB

Pond CB24: Prop CB

Pond CB25: Prop CB

Pond CB26: Prop CB

Pond CB27: Prop CB

Pond CB28: Prop CB

Pond CB29: Prop CB

Pond CB3: Prop CB

Pond CB30: Prop CB

Pond CB31: Prop CB

Peak Elev=56.51' Inflow=2.61 cfs 8,585 cf
15.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=115.0^{\prime} \mathrm{S}=0.0052$ '//' Outflow=2.61 cfs $8,585 \mathrm{cf}$

Peak Elev=55.97' Inflow=3.44 cfs 11,336 cf 15.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=202.0^{\prime} \mathrm{S}=0.0050$ '/' Outflow=3.44 cfs $11,336 \mathrm{cf}$

Peak Elev=56.70' Inflow=2.52 cfs 8,204 cf 15.0" Round Culvert $n=0.012$ L=122.0' $S=0.0049$ '/' Outflow=2.52 cfs 8,204 cf

Peak Elev=56.83' Inflow=2.72 cfs 8,905 cf 15.0" Round Culvert $n=0.012$ L=151.0' $S=0.0050$ '/' Outflow=2.72 cfs $8,905 \mathrm{cf}$

Peak Elev=56.18' Inflow=5.39 cfs 17,529 cf 18.0" Round Culvert n=0.012 L=94.0' S=0.0069'/' Outflow=5.39 cfs 17,529 cf

Peak Elev=56.79' Inflow=0.91 cfs 2,962 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=93.0^{\prime} \mathrm{S}=0.0172$ '/' Outflow=0.91 cfs 2,962 cf

Peak Elev=56.05' Inflow=0.26 cfs 786 cf 12.0" Round Culvert n=0.012 L=73.0' S=0.0247 '/' Outflow=0.26 cfs 786 cf

Peak Elev=54.55' Inflow=7.87 cfs 25,376 cf 24.0" Round Culvert $n=0.012$ L=79.0' $S=0.0215$ '/' Outflow=7.87 cfs 25,376 cf

Peak Elev=54.63' Inflow=1.77 cfs 5,770 cf 12.0" Round Culvert n=0.012 L=124.0' S=0.0105 '/' Outflow=1.77 cfs 5,770 cf

Peak Elev=52.81' Inflow=20.48 cfs 66,898 cf 36.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=20.48 cfs 66,898 cf

Peak Elev=57.42' Inflow=1.45 cfs 4,776 cf 12.0" Round Culvert $n=0.012$ L=110.0' $S=0.0050$ '/' Outflow=1.45 cfs 4,776 cf

Peak Elev=56.76' Inflow=2.36 cfs 7,754 cf 15.0" Round Culvert $n=0.012$ L=154.0' $S=0.0049$ '/' Outflow=2.36 cfs 7,754 cf

Peak Elev=56.31' Inflow=0.80 cfs 2,382 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=73.0$ ' $\mathrm{S}=0.0055$ '/' Outflow=0.80 cfs 2,382 cf

Peak Elev=56.05' Inflow=4.56 cfs 14,792 cf 18.0" Round Culvert $n=0.012$ L=182.0' $S=0.0049$ '/' Outflow=4.56 cfs 14,792 cf

Peak Elev=56.86' Inflow=0.99 cfs 3,084 cf
12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=20.0^{\prime} \mathrm{S}=0.0050$ '/' Outflow=0.99 cfs 3,084 cf

Peak Elev=55.23' Inflow=5.65 cfs 18,391 cf 18.0" Round Culvert $n=0.012$ L=135.0' $S=0.0052$ '/' Outflow=5.65 cfs 18,391 cf

Peak Elev=54.21' Inflow=8.77 cfs 28,832 cf 24.0" Round Culvert n=0.012 L=86.0' S=0.0052 '/' Outflow=8.77 cfs 28,832 cf

Pond CB32: Prop CB

Pond CB4: Prop CB

Pond CB5: Prop CB

Pond CB6: Prop CB

Pond CB7: Prop CB

Pond CB8: Prop CB

Pond CB9: Prop CB

Pond DMH1: Prop DMH

Pond DMH2: Prop DMH

Pond DMH3: Prop DMH

Pond P1: Wet Pond 1

Pond P2: Wet Pond 2

Pond P3: Wet Pond 3

Peak Elev=53.74' Inflow=9.61 cfs 31,615 cf 24.0" Round Culvert n=0.012 L=110.0' S=0.0050 '/l' Outflow=9.61 cfs 31,615 cf

Peak Elev=56.35' Inflow=6.13 cfs 20,320 cf 18.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=80.0^{\prime} \mathrm{S}=0.0050$ '/' Outflow=6.13 cfs 20,320 cf

Peak Elev=57.31' Inflow=0.72 cfs 2,412 cf 12.0" Round Culvert $n=0.012$ L=7.0' $S=0.0071$ '/' Outflow=0.72 cfs 2,412 cf

Peak Elev=57.44' Inflow=1.69 cfs 5,652 cf 12.0" Round Culvert n=0.012 L=152.0' S=0.0049 '/' Outflow=1.69 cfs 5,652 cf

Peak Elev=56.52' Inflow=2.46 cfs 8,218 cf 15.0" Round Culvert n=0.012 L=125.0' S=0.0052 '/' Outflow=2.46 cfs 8,218 cf

Peak Elev=55.84' Inflow=3.71 cfs 12,392 cf 18.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=60.0$ ' $\mathrm{S}=0.0042$ '/' Outflow=3.71 cfs $12,392 \mathrm{cf}$

Peak Elev=56.06' Inflow=0.31 cfs 1,025 cf 12.0" Round Culvert n=0.012 L=94.0' S=0.0053 '/' Outflow=0.31 cfs 1,025 cf

Peak Elev=55.69' Inflow=6.30 cfs 20,491 cf 18.0" Round Culvert n=0.012 L=56.0' $\mathrm{S}=0.0054$ '/' Outflow=6.30 cfs 20,491 cf

Peak Elev=49.15' Inflow=0.76 cfs 18,799 cf 24.0" Round Culvert n=0.012 L=55.0' S=0.0382 '/' Outflow=0.76 cfs 18,799 cf

Peak Elev=46.96' Inflow=0.76 cfs 18,799 cf 24.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=13.0$ ' $\mathrm{S}=0.0154$ '/' Outflow=0.76 cfs 18,799 cf

Peak Elev=55.58' Storage=18,851 cf Inflow=11.56 cfs 38,011 cf Outflow=3.53 cfs 29,248 cf

Peak Elev=54.66' Storage=17,086 cf Inflow=8.49 cfs 27,792 cf Outflow $=0.76$ cfs 18,799 cf

Peak Elev=52.09' Storage=35,418 cf Inflow=22.83 cfs 74,174 cf Outflow=7.35 cfs 58,366 cf

Peak Elev=55.92' Storage=595 cf Inflow=18.42 cfs 97,437 cf
Pond P3A: 36" RCP 36.0" Round Culvert w/ 6.0" inside fill $\mathrm{n}=0.012 \mathrm{~L}=50.0$ ' $\mathrm{S}=0.0090$ '/' Outflow=18.41 cfs $97,328 \mathrm{cf}$

Total Runoff Area $=1,164,080$ sf Runoff Volume $=319,631$ cf Average Runoff Depth $=3.29$ "
73.90% Pervious $=860,290$ sf 26.10% Impervious $=303,790$ sf

Summary for Subcatchment 1A: Road/Woods

Runoff $=10.89$ cfs @ 12.22 hrs, Volume= 42,659 cf, Depth> 2.96 "

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
250	91	Gravel roads, HSG D
33,945	84	$50-75 \%$ Grass cover, Fair, HSG D
2,445	78	Meadow, non-grazed, HSG D
125,365	77	Woods, Good, HSG D
10,995	98	Paved parking, HSG D
173,000	80	Weighted Average
162,005		93.64\% Pervious Area
10,995		6.36\% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Lag/CN Method, |
| :--- |

Summary for Subcatchment 1B: Pond

Runoff $=1.71$ cfs @ 12.09 hrs, Volume $=\quad 5,298$ cf, Depth> 3.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Water Surface		
	5,250	98			
	10,665	845	50-75\% Grass cover, Fair, HSG D		
	585	91	Gravel roads, HSG D		
	16,500	89	Weighted A	verage	
	11,250		68.18\% Per	vious Area	
	5,250		31.82\% Imp	ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ftft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Direct Entry,

Summary for Subcatchment 1C: Driveway

Runoff $=0.91$ cfs @ 12.09 hrs, Volume= 3,073 cf, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Summary for Subcatchment 1D: Driveway

Runoff $=\quad 0.82$ cfs @ 12.09 hrs, Volume= $2,748 \mathrm{cf}$, Depth> 4.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span=5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Summary for Subcatchment 1E: Grass
Runoff $=\quad 0.99$ cfs @ 12.09 hrs, Volume= 3,084 cf, Depth> 3.96"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN	Description		
	$\begin{aligned} & \hline 3,790 \\ & 5,565 \end{aligned}$	$\begin{aligned} & \hline 98 \\ & 84 \end{aligned}$	Paved parking, HSG D 50-75\% Grass cover, Fair, HSG D		
	$\begin{aligned} & 9,355 \\ & 5,565 \\ & 3,790 \end{aligned}$	90	Weighted Average 59.49\% Pervious Area 40.51\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$		Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description

	Area (sf)	CN	Paved parking, HSG D		
	5,960	98			
	185	84	Paved parking, HSG D 50-75\% Grass cover, Fair, HSG D		
	6,145	98	Weighted Average		
	185		3.01\% Pervious Area		
	5,960		96.99\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

6.0 Direct Entry,

Summary for Subcatchment 1G: Parking

Runoff $=\quad 0.97$ cfs @ 12.09 hrs, Volume= 3,240 cf, Depth> 4.63"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	7,850	98 P	Paved parking, HSG D		
	540	845	50-75\% Grass cover, Fair, HSG D		
	8,390	97 W	Weighted Average		
	540		6.44\% Pervious Area		
	7,850		93.56\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 1H: Parking

Runoff $=\quad 0.58$ cfs @ 12.09 hrs, Volume= 1,918 cf, Depth> 4.63"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	4,485	98 P	Paved parking, HSG D		
	480	845	50-75\% Grass cover, Fair, HSG D		
	4,965	97	Weighted Average		
	480		9.67\% Pervious Area		
	4,485		90.33\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 1I: Garage

Runoff $=\quad 0.19$ cfs @ 12.09 hrs, Volume $=648 \mathrm{cf}$, Depth> 4.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
1,650	98	Roofs, HSG D
1,650		100.00% Impervious Area
Tc	Length (feet)	Slope (ft/ft)
Velocity (ft/sec)	Capacity (cfs)	Description
6.0		

Summary for Subcatchment 1J: Parking

Runoff = 0.31 cfs @ 12.09 hrs, Volume= 1,025 cf, Depth> 4.63"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	2,435	98 P	Paved parking, HSG D		
	220	$84 \quad 5$	50-75\% Grass cover, Fair, HSG D		
	2,655	97 V	Weighted Average		
	220		8.29\% Pervious Area		
	2,435		91.71\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 1K: Parking
Runoff $=0.95$ cfs @ 12.09 hrs, Volume= 3,150 cf, Depth> 4.63"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
7,415	98	Paved parking, HSG D
740	84	$50-75 \%$ Grass cover, Fair, HSG D
8,155	97	Weighted Average
740		9.07% Pervious Area
7,415		90.93% Impervious Area

	Area (sf)	CN D	Description		
	13,005	98 P	Paved parking, HSG D		
	900	84 5	50-75\% Grass cover, Fair, HSG D		
	13,905	97 W	Weighted Average		
	900		6.47\% Pervious Area		
	13,005		93.53\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 1M: Building 1

Runoff $=\quad 1.80$ cfs @ 12.09 hrs, Volume= 6,045 cf, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	rea (sf)	CN Description			
15,400		98 Roofs, HSG D			
15,400		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ftft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 2: Woods

Runoff $=\quad 2.05$ cfs @ 12.09 hrs, Volume= 6,071 cf, Depth> 2.97"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	2,345	98 P	Paved parking, HSG D		
	7,125	845	50-75\% Grass cover, Fair, HSG D		
	11,330	77 V	Woods, Good, HSG D		
	3,740	73 B	Brush, Good, HSG D		
	24,540	80	Weighted Average		
	22,195		90.44\% Pervious Area		
	2,345		9.56\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3A: Existing Woods/Meadow

Runoff $=\quad 18.42$ cfs @ 12.46 hrs, Volume $=97,437$ cf, Depth> $2.67{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	rea (sf)	CN	Description		
	41,550	78	Meadow, non-grazed, HSG D		
	96,310	77	oods, Go	d, HSG D	
	37,860	77	eighted	verage	
	37,860		00.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
33.0	1,048	0.0120	0.53		Lag/CN Me

Summary for Subcatchment 3AA: Parking

Runoff $=0.64$ cfs @ 12.09 hrs, Volume $=\quad 2,104$ cf, Depth> 4.55"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	4,810	98 P	Paved parking, HSG D		
	740	845	50-75\% Gras	ass cover,	air, HSG D
	5,550	96			
	740				
	4,810		86.67\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3B1: Woods

Runoff $=\quad 2.84$ cfs @ 12.34 hrs, Volume= 13,256 cf, Depth> 2.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN	Description		
	895	91	Gravel roads, HSG D		
	9,780	84	50-75\% Grass cover, Fair, HSG D		
	10,430	78	Meadow, non-grazed, HSG D		
	34,540	77	Woods, Good, HSG D		
	55,645	79	Weighted Average 100.00\% Pervious Area		
	55,645				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
24.6	698	0.0100	0.47		Lag/CN Me

Summary for Subcatchment 3B2: Woods

Runoff $=\quad 5.14$ cfs @ 12.11 hrs, Volume $=\quad 15,782 \mathrm{cf}$, Depth> 2.78"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 6,715 | 84 | 50-75\% Grass cover, Fair, HSG D |
| 8,920 | 78 | Meadow, non-grazed, HSG D |
| 52,390 | 77 | Woods, Good, HSG D |

Summary for Subcatchment 3BB: Garage

Runoff $=\quad 0.19$ cfs @ 12.09 hrs, Volume= 648 cf, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
1,650	98	Roofs, HSG D
1,650		100.00% Impervious Area

Area (sf)		CN Description			
7,340		98	Paved parking, HSG D		
	7,340		00.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Runoff $=\quad 0.79$ cfs @ 12.09 hrs, Volume $=\quad 2,646$ cf, Depth> 4.63"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	6,275	98 P	Paved parking, HSG D		
	575	84	50-75\% Grass cover, Fair, HSG D		
	6,850	97 V	Weighted Average		
	575		8.39\% Pervious Area		
	6,275		91.61\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3D: Driveway

Runoff $=\quad 0.58$ cfs @ 12.09 hrs, Volume= 1,935 cf, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
4,930	98	Paved parking, HSG D
4,930		100.00% Impervious Area

	Area (sf)	CN D	Description		
	4,160	98 P	Paved parking, HSG D		
	880	845	50-75\% Grass cover, Fair, HSG D		
	5,040	96 W	Weighted Average		
	880		17.46\% Pervious Area		
	4,160		82.54\% Im	ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 3E: Driveway

Runoff $=\quad 0.35$ cfs @ 12.09 hrs, Volume= $1,193 \mathrm{cf}$, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	3,010	98 P	Paved parking, HSG D		
	30	845	50-75\% Grass cover, Fair, HSG D		
	3,040	98	Weighted Average		
	30		0.99\% Pervious Area		
	3,010		99.01\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 3EE: Building 4

Runoff $=\quad 0.62$ cfs @ 12.09 hrs, Volume= $2,100 \mathrm{cf}$, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Summary for Subcatchment 3F: Driveway

Runoff $=\quad 0.27$ cfs @ 12.09 hrs, Volume= 905 cf, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	2,275	98 P	Paved parking, HSG D		
	30	84 5	50-75\% Grass cover, Fair, HSG D		
	2,305	98 V	Weighted Average		
	30		1.30\% Pervious Area		
	2,275		98.70\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{rr} c & \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3FF: Courtyard

Runoff $=\quad 0.28$ cfs @ 12.09 hrs, Volume= 862 cf, Depth> 3.55"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	395	98 P	Paved parking, HSG D		
	2,520	84 5	50-75\% Grass cover, Fair, HSG D		
	2,915	86	Weighted Average		
	2,520		86.45\% Pervious Area		
	395		13.55\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3G: Pond

Runoff $=1.62$ cfs @ 12.09 hrs, Volume= 4,986 cf, Depth> 3.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	4,210	98 W	Water Surface, HSG D		
	420	91 G	Gravel roads, HSG D		
	11,320	84 5	50-75\% Grass cover, Fair, HSG D		
	15,950	88 W	Weighted Average		
	11,740		73.61\% Pervious Area		
	4,210		26.39\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{rr} c & \text { Length } \\ \text { Leet) } \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3GG: Buiilding 2A

Runoff $=\quad 1.94$ cfs @ 12.09 hrs, Volume= 6,526 cf, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	7,675	98 R	Roofs, HSG D		
	8,950	98 R	Roofs, HSG C		
	16,625	98 V	Weighted Average		
	16,625		100.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3H: Pond

Runoff $=\quad 2.35$ cfs @ 12.09 hrs, Volume= $\quad 7,276$ cf, Depth> 3.85"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
8,185	98	Water Surface, HSG D
14,475	84	$50-75 \%$ Grass cover, Fair, HSG D
22,660	89	Weighted Average
14,475		63.88% Pervious Area
8,185		36.12% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$
6.0	Capacity (cfs)	Description	
		Direct Entry,	
	Summary for Subcatchment 3HH: Building 2B		

Runoff $=\quad 1.78$ cfs @ 12.09 hrs, Volume $=\quad 5,976 \mathrm{cf}$, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf) CN Description					
		98 R	oofs, HS		
$15,225$		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	Capacity \qquad	Description
6.0					Direct Entry

Summary for Subcatchment 3I: Parking

Runoff = 1.51 cfs @ 12.09 hrs, Volume= 4,984 cf, Depth> 4.55"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN	Description		
	11,400	98 P	Paved parking, HSG D		
	1,750	845	50-75\% Grass cover, Fair, HSG D		
	13,150	96	Weighted Average		
	1,750		13.31\% Pervious Area		
	11,400		86.69\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{array}{r} \text { Velocity } \\ (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{array}$	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3II: Building 3

Runoff $=\quad 2.29$ cfs @ 12.09 hrs, Volume $=7,693$ cf, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
12,640	98	Roofs, HSG D
6,960	98	Roofs, HSG C
19,600	98	Weighted Average
19,600		100.00% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment 3J: Courtyard

Runoff $=\quad 0.26$ cfs @ 12.09 hrs, Volume= 786 cf, Depth> 3.35"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	ea (sf)	CN ${ }^{84}$ Description $50-75 \%$ Grass cover Fair HSG D			
	2,815				
2,815		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3K: Courtyard

Runoff $=\quad 1.57$ cfs @ 12.09 hrs, Volume= 4,885 cf, Depth> 3.96"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN	Description		
	5,615	98	Paved parking, HSG D		
	510	98	Paved parking, HSG C		
	8,020	84	50-75\% Grass cover, Fair, HSG D		
	675	79	50-75\% Grass cover, Fair, HSG C		
	14,820	90	Weighted Average		
	8,695		58.67\% Pervious Area		
	6,125		41.33\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 3L: Parking

Runoff $=\quad 1.23$ cfs @ 12.09 hrs, Volume= 4,137 cf, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

6.0 Direct Entry,

Summary for Subcatchment 3M: Parking

Runoff $=\quad 0.64$ cfs @ 12.09 hrs, Volume= 2,136 cf, Depth> 4.63"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN	Paved parking, HSG D		
	5,140				
	390		Paved parking, HSG D 50-75\% Grass cover, Fair, HSG D		
	5,530	$97 \quad 7$	Weighted Average 7.05\% Pervious Area 92.95\% Impervious Area		
	390				
	5,140				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 3N: Garage

Runoff $=\quad 0.19$ cfs @ 12.09 hrs, Volume= 648 cf, Depth> 4.71"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	ea (sf)	CN Description			
	1,650	98 R	oofs, HSG		
1,650		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 30: Parking

Runoff $=\quad 0.64$ cfs @ 12.09 hrs, Volume $=2,100 \mathrm{cf}$, Depth> 4.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Summary for Subcatchment 3Q: Courtyard

Runoff $=\quad 0.93$ cfs @ 12.09 hrs, Volume= 2,800 cf, Depth> 3.35"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
2,510	98	Paved parking, HSG C
185	84	$50-75 \%$ Grass cover, Fair, HSG D
7,335	79	$50-75 \%$ Grass cover, Fair, HSG C
10,030	84	Weighted Average
7,520		74.98% Pervious Area
2,510		25.02\% Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct En

Runoff $=\quad 0.74$ cfs @ 12.09 hrs, Volume $=\quad 2,228$ cf, Depth> 3.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN D	Description		
	1,960	98 P	Paved parking, HSG C		
	6,020	79 5	50-75\% Grass cover, Fair, HSG C		
	7,980	84	Weighted Average		
	6,020		75.44\% Pervious Area		
	1,960		24.56\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{array}{rr} \text { e } & \text { Velocity } \\ \text { (} & (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 3S: Parking

Runoff $=\quad 1.09$ cfs @ 12.09 hrs, Volume= 3,599 cf, Depth> 4.55"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"
$\left.\begin{array}{lrl}\text { Area (sf) } & \text { CN } & \text { Description } \\ \begin{array}{rl}8,015 & 98\end{array} & \begin{array}{l}\text { Paved parking, HSG D } \\ 1,480\end{array} & 84 \\ \text { 50-75\% Grass cover, Fair, HSG D }\end{array}\right]$

	Area (sf)	CN D	Description		
	1,355	98 P	Paved parking, HSG C		
	7,675	79 50	50-75\% Grass cover, Fair, HSG C		
	25	84 5	50-75\% Grass cover, Fair, HSG D		
	9,055	82	Weighted Average		
	7,700		85.04\% Pervious Area		
	1,355		14.96\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 3U: Parking

Runoff $=\quad 1.40$ cfs @ 12.09 hrs, Volume $=\quad 4,656$ cf, Depth> 4.63"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
6,620	98	Paved parking, HSG D
4,820	98	Paved parking, HSG C
200	84	50-75\% Grass cover, Fair, HSG D
415	79	50-75\% Grass cover, Fair, HSG C
12,055	97	Weighted Average
615		5.10\% Pervious Area
11,440		94.90% Impervious Area

Tc			
(min)	Length (feet)		Slope
---:			
(ft/ft)		Velocity	
---:			
(ft/sec)		Capacity	
---:			
(cfs)			

Direct Entry,

Summary for Subcatchment 3V: Parking

Runoff $=0.72$ cfs @ 12.09 hrs, Volume= 2,330 cf, Depth> 4.36"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Area (sf)	CN	Description
870	98	Paved parking, HSG D
4,135	98	Paved parking, HSG C
1,410	79	$50-75 \%$ Grass cover, Fair, HSG C
6,415	94	Weighted Average
1,410		21.98% Pervious Area
5,005		78.02% Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0		Direct Entry,				
		Summary for Subcatchment 3W: Garage				
Runoff	=	0.19 cfs	@ 12.0	hrs, Vol	me=	648 cf, Depth>

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN	Description		
	1,545				
	105		Roofs, HSG C Roofs, HSG D		
	1,650	98 V	Weighted Average 100.00\% Impervious Area		
	1,650				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 3X: Parking

Runoff $=\quad 1.45$ cfs @ 12.09 hrs, Volume= 4,776 cf, Depth> 4.55"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	Area (sf)	CN	Description		
	1,985	98	Paved parking, HSG C		
	8,490	98	Paved parking, HSG D		
	210	84	50-75\% Grass cover, Fair, HSG D		
	945	79	50-75\% Grass cover, Fair, HSG C		
	11,630	96	Weighted Average		
	1,155		9.93\% Pervious Area		
	10,475		90.07\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 3Z: Parking

Runoff $=\quad 1.27$ cfs @ 12.09 hrs, Volume $=\quad 4,177 \mathrm{cf}$, Depth $>4.55^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

Summary for Subcatchment 5: Woods

Runoff $=1.22$ cfs @ 12.15 hrs, Volume $=\quad 4,093$ cf, Depth> 2.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=5.32"

	ea (sf)	CN Description			
$\begin{array}{r} 14,800 \\ 4,070 \\ \hline \end{array}$		7871	Meadow, non-grazed, HSG DMeadow, non-grazed, HSG C		
$\begin{aligned} & 18,870 \\ & 18,870 \end{aligned}$		76	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity \qquad	Description
7.4	165	0.0133	0.37		Lag/CN Method,
2.9	130	0.0567	0.74		Lag/CN Method,
10.3	295	Total			

Summary for Reach DP1: Design Point - Offsite Flow

Inflow Area	274,950	33.85\% Impervious,	Inflow Depth > 3.14" for 10-Yr event
Inflow	14.04 cfs @	12.23 hrs , Volume=	71,907 cf
Outflow	14.04 cfs @	12.23 hrs , Volume=	71,907 cf, Atten= 0\%, Lag= 0.0 m

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach DP2: Design Point - Offsite Flow

Inflow Ar	24,540 sf,	9.56\% Impervious,	2.97" for 10-Yr event
Inflow	2.05 cfs @	12.09 hrs , Volume=	6,071 cf
Outflow	2.05 cfs @	12.09 hrs , Volume=	$6,071 \mathrm{cf}$, Atten= 0\%, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach DP3: Design Point - Stream

Inflow Area =	844,185	24.68\% Impervious	Dept
Inflow	29.86 cfs @	12.51 hrs , Volume=	202,839 cf
Outflow	29.86 cfs @	12.51 hrs, Volume=	202,839 cf, Atten=0\%, Lag= 0.0

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach DP4: Design Point - Offsite Sheetflow

low Area =	1,535 sf,	0.00\% Impervious,	Depth > 2.79" for 10-Yr event
Inflow	0.12 cfs @	12.09 hrs , Volume=	356 cf
Outflow	0.12 cfs @	12.09 hrs, Volume=	356 cf, Atten= 0\%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach DP5: Design Point - Offsite Sheetflow

In	18,870	0.00\% Impervious,	Depth > 2.60" for 10-Yr event
Inflo	1.22 cfs @	12.15 hrs , Volume=	4,093 cf
Outflow	1.22 cfs @	12.15 hrs, Volume=	$4,093 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach R3A: Swale

Inflow	437,860 sf,	0.00\% Impervious,	w Depth > 2.67" for 10-Yr event
Inflow	18.41 cfs @	12.47 hrs , Volume=	97,328 cf
Outflow	18.29 cfs @	12.53 hrs , Volume=	96,966 cf, Atten= 1\%, Lag= 3.7 m

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity= 2.88 fps , Min. Travel Time= 2.2 min
Avg. Velocity $=1.18 \mathrm{fps}$, Avg. Travel Time $=5.3 \mathrm{~min}$
Peak Storage= 2,392 cf @ 12.50 hrs
Average Depth at Peak Storage= 0.92'
Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 21.06 cfs
6.00 ' x 1.00' deep channel, $\mathrm{n}=0.040$ Winding stream, pools \& shoals

Side Slope Z-value= 1.0 '//' Top Width= 8.00'
Length $=375.0^{\prime}$ Slope $=0.0089$ '/'
Inlet Invert=53.35', Outlet Invert=50.00'

Summary for Reach R3B: Stream

Inflow	844,185 sf,	24.68\% Impervious,	w Depth > 2.89"
Inflow	29.94 cfs @	12.48 hrs , Volume=	203,169 cf
Outflow	29.86 cfs @	12.51 hrs, Volume=	202,839 cf, Atten= 0\%, Lag= 1.7 m

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity= 4.98 fps , Min. Travel Time $=0.9 \mathrm{~min}$
Avg. Velocity $=1.98 \mathrm{fps}$, Avg. Travel Time $=2.4 \mathrm{~min}$
Peak Storage= 1,684 cf @ 12.49 hrs
Average Depth at Peak Storage=1.16'
Bank-Full Depth= 1.50' Flow Area= 8.3 sf, Capacity= 46.72 cfs
4.00' x 1.50' deep channel, n= 0.040 Winding stream, pools \& shoals

Side Slope Z-value= 1.0 '/' Top Width= 7.00'
Length=280.0' Slope= 0.0232 '/'
Inlet Invert= 50.00', Outlet Invert= 43.50'

Summary for Pond CB1: Prop CB

Inflow Area =	7,000	.00\% Impervious,	Inflow Depth > 4.71" for $10-\mathrm{Yr}$ event
Inflow	0.82 cfs @	12.09 hrs , Volume=	2,748 cf
Outflow	0.82 cfs @	12.09 hrs , Volume=	2,748 cf, Atten= 0\%, Lag= 0.0 min
Primary	0.82 cfs @	12.09 hrs , Volume=	2,748 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.80' @ 12.09 hrs
Flood Elev= 59.90'

Device	Routing	Invert	Outlet Devices
\#1	Primary	56.25'	12.0" Round Culvert
			$\mathrm{L}=18.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 56.25' / 56.15' S=0.0056 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 0.79 sf

Primary OutFlow Max=0.79 cfs @ 12.09 hrs HW=56.79' (Free Discharge)
L-1=Culvert (Barrel Controls 0.79 cfs @ 2.69 fps)

Summary for Pond CB10: Prop CB

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 55.26' @ 12.09 hrs
Flood Elev= 58.70'

Device	Routing	Invert	Outlet Devices
\#1	Primary	54.70'	12.0" Round Culvert
			$\mathrm{L}=18.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 54.70' / 54.60' S=0.0056 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 0.79 sf

Primary OutFlow Max=0.83 cfs @ 12.09 hrs HW=55.25' (Free Discharge)
——1=Culvert (Barrel Controls 0.83 cfs @ 2.72 fps)

Summary for Pond CB11: Prop CB

Inflow Area =	12,270	00.00\% Imperviou	Inflow Depth >	4.71" for 10-Yr event
Inflow	1.43 cfs @	12.09 hrs , Volume=	4,816 cf	
Outflow	1.43 cfs @	12.09 hrs , Volume=	4,816 cf,	Atten= 0\%, Lag= 0.0 min
Primary	1.43 cfs @	12.09 hrs , Volume=	4,816 cf	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 55.16' @ 12.09 hrs
Flood Elev= 58.70'
Device Routing Invert Outlet Devices
\#1 Primary 54.50' 12.0" Round Culvert
L= 150.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 54.50' / 53.50' S=0.0067 '/' Cc=0.900
$\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$
Primary OutFlow Max=1.39 cfs @ 12.09 hrs HW=55.15' (Free Discharge)
L-1=Culvert (Barrel Controls 1.39 cfs @ 3.66 fps)

Summary for Pond CB12: Prop CB

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=55.38' @ 12.09 hrs
Flood Elev= 58.50'

Device	Routing	Invert	Outlet Devices
\#1	Primary	54.85'	12.0" Round Culvert
			$\mathrm{L}=30.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 54.85' / 54.70' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 0.79 sf

Primary OutFlow Max=0.77 cfs @ 12.09 hrs HW=55.37' (Free Discharge)
L-1=Culvert (Barrel Controls 0.77 cfs @ 2.69 fps)

Summary for Pond CB13: Prop CB

Inflow Area =	11,890	87.76\% Impervious,	Inflow Depth > 4.60" for 10-Yr event
Inflow	1.37 cfs @	12.09 hrs , Volume=	4,556 cf
Outflow	1.37 cfs @	12.09 hrs , Volume=	$4,556 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	1.37 cfs @	12.09 hrs , Volume=	4,556 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 55.31' @ 12.09 hrs
Flood Elev= 58.50'

Summary for Pond CB14: Prop CB

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 54.76' @ 12.09 hrs
Flood Elev= 58.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	$54.00{ }^{\prime}$	15.0" Round Culvert
			$\mathrm{L}=18.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 54.00' / 53.90' S=0.0056 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 1.23 sf

Primary OutFlow Max=1.68 cfs @ 12.09 hrs HW=54.75' (Free Discharge)
—1=Culvert (Barrel Controls 1.68 cfs @ 3.13 fps)

Summary for Pond CB15: Prop CB

Inflow A	47,0	Impervious,	Inflow Depth > 4.58" for $10-\mathrm{Yr}$ event
Inflow	5.44 cfs @	12.09 hrs , Volume=	17,990 cf
Outflow	5.44 cfs @	12.09 hrs , Volume=	17,990 cf, Atten= 0\%, Lag= 0.0 min
Primary	5.44 cfs @	12.09 hrs , Volume=	17,990 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=55.02' @ 12.09 hrs
Flood Elev= 58.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	53.65'	18.0" Round Culvert
			$\mathrm{L}=24.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 53.65' / 53.50' S=0.0062 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 1.77 sf

Primary OutFlow Max=5.29 cfs @ 12.09 hrs HW=55.00' (Free Discharge)
L-1=Culvert (Barrel Controls 5.29 cfs @ 4.17 fps)

Summary for Pond CB16: Prop CB

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 57.28' @ 12.09 hrs
Flood Elev= 59.70'
Device Routing Invert Outlet Devices
\#1 Primary 56.60 12.0" Round Culvert
$\mathrm{L}=145.0^{\prime} \quad \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 56.60' / 55.85' S=0.0052 '/' Cc= 0.900
$\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$
Primary OutFlow Max=1.30 cfs @ 12.09 hrs HW=57.27' (Free Discharge)
L-1=Culvert (Barrel Controls 1.30 cfs @ 3.31 fps)

Summary for Pond CB17: Prop CB

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.51' @ 12.09 hrs
Flood Elev= 59.70'

Device	Routing	Invert	Outlet Devices
\#1	Primary	$55.60{ }^{\prime}$	15.0" Round Culvert
			$\mathrm{L}=115.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 55.60' $/ 55.00{ }^{\prime} \mathrm{S}=0.0052 \mathrm{l} / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area= 1.23 sf

Primary OutFlow Max=2.54 cfs @ 12.09 hrs HW=56.49' (Free Discharge)
L-1=Culvert (Barrel Controls 2.54 cfs @ 3.80 fps)

Summary for Pond CB18: Prop CB

Inflow Area =	29,850 s	89.18\% Impervious	Inflow Depth > 4.56" for 10-Yr event
Inflow	3.44 cfs @	12.09 hrs , Volume=	11,336 cf
Outflow	3.44 cfs @	12.09 hrs , Volume=	11,336 cf, Atten=0\%, Lag= 0.0 min
Primary	3.44 cfs @	12.09 hrs , Volume=	11,336 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 55.97' @ 12.09 hrs
Flood Elev= 59.70'

Device	Routing	Invert	Outlet Devices
\#1	Primary	54.90	15.0" Round Culvert L=202.0' CPP, square edge headwall, Inlet / Outlet Invert= 54.90' / 53.90' S=0. $\mathrm{n}=0.012$, Flow Area $=1.23 \mathrm{sf}$
Primary OutFlow Max=3.35 cfs @ 12.09 hrs HW=55.95' (Free Discharge) —1=Culvert (Barrel Controls 3.35 cfs @ 4.09 fps)			

Summary for Pond CB19: Prop CB

Inflow Area =	23,205 sf	74.06\% Impervious,	Inflow Depth > 4.24" for 10-Yr event
Inflow	2.52 cfs @	12.09 hrs , Volume=	8,204 cf
Outflow	2.52 cfs @	12.09 hrs , Volume=	8,204 cf, Atten= 0\%, Lag= 0.0 min
Primary	2.52 cfs @	12.09 hrs , Volume=	8,204 cf

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.70' @ 12.09 hrs
Flood Elev= 59.60'

Device	Routing	Invert	Outlet Devices
\#1	Primary	$55.80{ }^{\prime}$	15.0" Round Culvert
			$\mathrm{L}=122.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 55.80' / 55.20' S=0.0049'/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 1.23 sf

Primary OutFlow Max=2.45 cfs @ 12.09 hrs HW=56.68' (Free Discharge)
L-1=Culvert (Barrel Controls 2.45 cfs @ 3.72 fps)

Summary for Pond CB2: Prop CB

Inflow Area =	24,185	76.99\% Impervious,	Inflow Depth > 4.42" for 10-Yr event
Inflow	2.72 cfs @	12.09 hrs , Volume=	8,905 cf
Outflow	2.72 cfs @	12.09 hrs , Volume=	$8,905 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	2.72 cfs @	12.09 hrs , Volume=	8,905 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.83' @ 12.09 hrs
Flood Elev= 59.90'

Device	Routing	Invert	Outlet Devices
\#1	Primary	55.90'	15.0" Round Culvert
			$\mathrm{L}=151.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 55.90' 55.15 ' S=0.0050 '/l Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=1.23 \mathrm{sf}$

Primary OutFlow Max=2.65 cfs @ 12.09 hrs HW=56.82' (Free Discharge)
L-1=Culvert (Barrel Controls 2.65 cfs @ 3.84 fps)

Summary for Pond CB20: Prop CB

Inflow Area =	49,860	72.84\% Imperviou	Inflow Depth > 4.22" for 10-Yr event
Inflow	5.39 cfs @	12.09 hrs , Volume=	17,529 cf
Outflow	5.39 cfs @	12.09 hrs , Volume=	17,529 cf, Atten= 0\%, Lag= 0.0 min
Primary	5.39 cfs @	12.09 hrs , Volume=	17,529 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.18' @ 12.09 hrs
Flood Elev= 59.60'
Device Routing Invert Outlet Devices
\#1 Primary 54.95' 18.0" Round Culvert
L=94.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 54.95' / 54.30' S=0.0069 '/' Cc=0.900
$\mathrm{n}=0.012$, Flow Area= 1.77 sf
Primary OutFlow Max=5.25 cfs @ 12.09 hrs HW=56.16' (Free Discharge)
L-1=Culvert (Barrel Controls 5.25 cfs @ 4.71 fps)

Summary for Pond CB21: Prop CB

Inflow Area $=$	8,265 sf, 69.51% Impervious,	Inflow Depth > $4.30 "$	for $10-\mathrm{Yr}$ event
Inflow	$=$	$0.91 \mathrm{cfs} @$	12.09 hrs , Volume $=$
Outflow	$=$	$0.91 \mathrm{cfs} @$	12.09 hrs , Volume $=$
Primary	$=$	$0.91 \mathrm{cfs} @$	12.09 hrs , Volume $=$

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.79' @ 12.09 hrs
Flood Elev=60.30'

Device	Routing	Invert	Outlet Devices
\#1	Primary	$56.30 '$	12.0" Round Culvert
			$\mathrm{L}=93.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 56.30' / 54.70' S=0.0172 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 0.79 sf

Primary OutFlow Max=0.88 cfs @ 12.09 hrs HW=56.78' (Free Discharge)
_1=Culvert (Inlet Controls 0.88 cfs @ 2.36 fps)

Summary for Pond CB22: Prop CB

Inflow Area =	2,815	0.00\% Impervious,	fflow Depth > 3.35" for 10-Yr event
Inflow	0.26 cfs @	12.09 hrs , Volume=	786 cf
Outflow	0.26 cfs @	12.09 hrs , Volume=	$786 \mathrm{cf}, \mathrm{Atten}=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Primary	0.26 cfs @	12.09 hrs , Volume=	786 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.05' @ 12.09 hrs
Flood Elev= 59.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	55.80'	12.0" Round Culvert $\mathrm{L}=73.0^{\prime} \quad \mathrm{CPP}$, square edge headwall, K Inlet / Outlet Invert=55.80' / 54.00' S=0. $\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$
Primary OutFlow Max=0.26 cfs @ 12.09 hrs HW=56.05' (Free Discharge) ——1=Culvert (Inlet Controls 0.26 cfs @ 1.69 fps)			

Summary for Pond CB23: Prop CB

Inflow Area =	72,945	.06\% Imperviou	Inflow Depth > 4.17" for $10-\mathrm{Yr}$ event
Inflow	7.87 cfs @	12.09 hrs , Volume=	25,376 cf
Outflow	7.87 cfs @	12.09 hrs , Volume=	25,376 cf, Atten= 0\%, Lag= 0.0 min
Primary	7.87 cfs @	12.09 hrs , Volume=	25,376 cf

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 54.55' @ 12.09 hrs
Flood Elev= 59.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	53.30'	24.0" Round Culvert
			$\mathrm{L}=79.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 53.30' $/ 51.60^{\prime} \mathrm{S}=0.0215 \mathrm{l} / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area= 3.14 sf

Primary OutFlow Max=7.67 cfs @ 12.09 hrs HW=54.53' (Free Discharge)
——1=Culvert (Inlet Controls 7.67 cfs @ 3.78 fps)

Summary for Pond CB24: Prop CB

Inflow Area =	15,965	\% Imperviou	Inflow Depth > 4.34" for 10-Yr event
Inflow	1.77 cfs @	12.09 hrs , Volume=	5,770 cf
Outflow	1.77 cfs @	12.09 hrs , Volume=	$5,770 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	1.77 cfs @	12.09 hrs , Volume=	5,770 cf

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 54.63' @ 12.09 hrs
Flood Elev= 58.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	53.90'	12.0" Round Culvert
			$\mathrm{L}=124.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=53.90' $/ 52.60^{\prime} \quad \mathrm{S}=0.0105 \mathrm{I} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$

Primary OutFlow Max=1.73 cfs @ 12.09 hrs HW=54.61' (Free Discharge)
\&1=Culvert (Inlet Controls 1.73 cfs @ 2.88 fps)

Summary for Pond CB25: Prop CB

Inflow Area $=$	$184,690 \mathrm{sf}$,	76.55%	Impervious,	Inflow Depth $>$
Inflow	$=$	$20.48 \mathrm{cfs} @$	12.09 hrs , Volume=	for $10-\mathrm{Yr}$ event
Outflow	$=$	$20.48 \mathrm{cfs} @$	12.09 hrs , Volume $=$	$66,898 \mathrm{cf}$
Primary	$=$	$20.48 \mathrm{cfs} @$	12.09 hrs , Volume $=$	$66,898 \mathrm{cf}$

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 52.81' @ 12.09 hrs
Flood Elev= 58.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	50.60'	36.0" Round Culvert
			$\mathrm{L}=20.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 50.60' $50.50 ' S=0.0050$ '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=7.07 \mathrm{sf}$

Primary OutFlow Max=19.94 cfs @ 12.09 hrs HW=52.78' (Free Discharge)
L1=Culvert (Barrel Controls 19.94 cfs @ 5.07 fps)

Summary for Pond CB26: Prop CB

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 57.42' @ 12.09 hrs
Flood Elev= 59.70'

Device	Routing	Invert	Outlet Devices
\#1	Primary	56.70'	12.0" Round Culvert
			$\mathrm{L}=110.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 56.70' / 56.15' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 0.79 sf

Primary OutFlow Max=1.41 cfs @ 12.09 hrs HW=57.41' (Free Discharge)
L-1=Culvert (Barrel Controls 1.41 cfs @ 3.31 fps)

Summary for Pond CB27: Prop CB

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.76' @ 12.09 hrs
Flood Elev= 59.50'

Summary for Pond CB28: Prop CB

Inflow Area =	9,055	96\% Imperviou	Inflow Depth > 3.16" for $10-\mathrm{Yr}$ event
Inflow	0.80 cfs @	12.09 hrs , Volume=	2,382 cf
Outflow	0.80 cfs @	12.09 hrs , Volume=	$2,382 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	0.80 cfs @	12.09 hrs, Volume=	2,382 cf

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.31' @ 12.09 hrs
Flood Elev= 59.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	55.80'	12.0" Round Culvert
			$\mathrm{L}=73.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 55.80' / 55.40' S=0.0055 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 0.79 sf

Primary OutFlow Max=0.78 cfs @ 12.09 hrs HW=56.30' (Free Discharge)
L-1=Culvert (Barrel Controls 0.78 cfs @ 2.89 fps)

Summary for Pond CB29: Prop CB

Inflow Area $=$	$41,775 \mathrm{sf}, 73.30 \%$ Impervious,	Inflow Depth > $4.25 "$	for $10-\mathrm{Yr}$ event
Inflow	$=$	$4.56 \mathrm{cfs} @$	12.09 hrs , Volume $=$
Outflow	$=$	$4.56 \mathrm{cfs} @$	12.09 hrs , Volume $=$
Primary	$=$	$4.56 \mathrm{cfs} @$	12.09 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.05' @ 12.09 hrs
Flood Elev= 58.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$54.90 '$	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L=182.0}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert $=54.90^{\prime} / 54.00^{\prime} \quad \mathrm{S}=0.0049 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.012$, Flow Area= 1.77 sf	

Primary OutFlow Max=4.44 cfs @ 12.09 hrs HW=56.03' (Free Discharge)
—1=Culvert (Barrel Controls 4.44 cfs @ 4.32 fps)

Summary for Pond CB3: Prop CB

Inflow Area $=$	$9,355 \mathrm{sf}, 40.51 \%$	Impervious,	Inflow Depth $>3.96 "$	for $10-\mathrm{Yr}$ event
Inflow	$=$	$0.99 \mathrm{cfs} @$	12.09 hrs , Volume=	$3,084 \mathrm{cf}$
Outflow	$=$	$0.99 \mathrm{cfs} @$	12.09 hrs , Volume $=$	$3,084 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$0.99 \mathrm{cfs} @$	12.09 hrs , Volume=	$3,084 \mathrm{cf}$

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.86' @ 12.09 hrs
Flood Elev= 60.00'
Device Routing Invert Outlet Devices
\#1 Primary 56.25 12.0" Round Culvert
$\mathrm{L}=20.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 56.25' / 56.15' S=0.0050 '/' Cc= 0.900
$\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$
Primary OutFlow Max=0.96 cfs @ 12.09 hrs HW=56.85' (Free Discharge)
—1=Culvert (Barrel Controls 0.96 cfs @ 2.79 fps)

Summary for Pond CB30: Prop CB

Inflow Area $=$	51,270 sf, 75.36% Impervious,	Inflow Depth > 4.30"	for $10-\mathrm{Yr}$ event
Inflow	$=$	$5.65 \mathrm{cfs} @$	12.09 hrs , Volume $=$
Outflow	$=$	$5.65 \mathrm{cfs} @$	12.09 hrs , Volume $=$
Primary	$=$	$5.65 \mathrm{cfs} @$	12.09 hrs , Volume $=$

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 55.23' @ 12.09 hrs
Flood Elev= 57.50'

Device	Routing	Invert	Outlet Devices
\#1	Primary	53.90'	18.0" Round Culvert
			$\mathrm{L}=135.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 53.90' / 53.20' S=0.0052 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 1.77 sf

Primary OutFlow Max=5.51 cfs @ 12.09 hrs HW=55.20' (Free Discharge)
L-1=Culvert (Barrel Controls 5.51 cfs @ 4.52 fps)

Summary for Pond CB31: Prop CB

Inflow Area =	78,060	82.74\% Imperviou	Inflow Depth > 4.43" for 10-Yr event
Inflow	8.77 cfs @	12.09 hrs , Volume=	28,832 cf
Outflow	8.77 cfs @	12.09 hrs , Volume=	$28,832 \mathrm{cf}$, Atten $=0 \%$ Lag $=0.0 \mathrm{~min}$
Primary	8.77 cfs @	12.09 hrs , Volume=	28,832 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 54.21' @ 12.09 hrs
Flood Elev= 58.80'

Summary for Pond CB32: Prop CB

Inflow Area =	85,240 sf	83.73\% Impervious,	Inflow Depth > 4.45" for 10-Yr event
Inflow	9.61 cfs @	12.09 hrs , Volume=	31,615 cf
Outflow	9.61 cfs @	12.09 hrs , Volume=	31,615 cf, Atten $=0 \%$ Lag $=0.0 \mathrm{~min}$
Primary	9.61 cfs @	12.09 hrs, Volume=	31,615 cf

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 53.74' @ 12.09 hrs
Flood Elev= 58.80'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	52.15^{\prime}	$\mathbf{2 4 . 0 " \text { Round Culvert }}$
		$\mathrm{L}=110.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $52.15^{\prime} / 51.60^{\prime} \quad \mathrm{S}=0.0050 \mathrm{I} / \mathrm{Cc}=0.900$	
	$\mathrm{n}=0.012$, Flow Area $=3.14 \mathrm{sf}$		

Primary OutFlow Max=9.35 cfs @ 12.09 hrs HW=53.71' (Free Discharge)
—1=Culvert (Barrel Controls 9.35 cfs @ 4.89 fps)

Summary for Pond CB4: Prop CB

Inflow Are	53,490	pervious,	Inflow Depth > 4.56" for $10-\mathrm{Yr}$ event
Inflow	6.13 cfs @	12.09 hrs , Volume=	20,320 cf
Outflow	6.13 cfs @	12.09 hrs , Volume=	20,320 cf, Atten= 0\%, Lag= 0.0 min
Primary	6.13 cfs @	12.09 hrs , Volume=	20,320 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.35' @ 12.09 hrs
Flood Elev= 59.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	54.90'	18.0" Round Culvert
			$\mathrm{L}=80.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 54.90' / 54.50' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 1.77 sf

Primary OutFlow Max=5.97 cfs @ 12.09 hrs HW=56.33' (Free Discharge)
L-1=Culvert (Barrel Controls 5.97 cfs @ 4.43 fps)

Summary for Pond CB5: Prop CB

Inflow Area $=$	$6,145 \mathrm{sf}, 96.99 \%$	Impervious,	Inflow Depth $>$	$4.71 "$
Inflow	$=$	$0.72 \mathrm{cfs} @$	12.09 hrs , Volume=	$10-\mathrm{Yr}$ event
Outflow	$=$	$0.72 \mathrm{cfs} @$	12.09 hrs , Volume=	$2,412 \mathrm{cf}$
Primary	$=$	$0.72 \mathrm{cfs} @$	12.09 hrs , Volume=	$2,412 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 57.31' @ 12.09 hrs
Flood Elev= 60.00'
Device Routing Invert Outlet Devices
\#1 Primary 56.80 12.0" Round Culvert
L=7.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 56.80' / 56.75' S=0.0071 '/' Cc= 0.900
$\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$
Primary OutFlow Max=0.70 cfs @ 12.09 hrs HW=57.31' (Free Discharge)
—1=Culvert (Barrel Controls 0.70 cfs @ 2.55 fps)

Summary for Pond CB6: Prop CB

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 57.44' @ 12.09 hrs
Flood Elev=60.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	56.65'	12.0" Round Culvert
			$\mathrm{L}=152.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 56.65' / 55.90' S=0.0049'/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$

Primary OutFlow Max=1.65 cfs @ 12.09 hrs HW=57.43' (Free Discharge)
L-1=Culvert (Barrel Controls 1.65 cfs @ 3.45 fps)

Summary for Pond CB7: Prop CB

Inflow Area $=$	$21,150 \mathrm{sf}$, 94.30\% Impervious,	Inflow Depth $>$	$4.66 "$	for $10-\mathrm{Yr}$ event
Inflow	$=$	$2.46 \mathrm{cfs} @$	12.09 hrs , Volume $=$	$8,218 \mathrm{cf}$
Outflow	$=$	$2.46 \mathrm{cfs} @$	12.09 hrs , Volume $=$	$8,218 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$2.46 \mathrm{cfs} @$	12.09 hrs , Volume $=$	$8,218 \mathrm{cf}$

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 56.52' @ 12.09 hrs
Flood Elev= 60.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	$55.65{ }^{\prime}$	15.0" Round Culvert
			$\mathrm{L}=125.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 55.65' / 55.00' S=0.0052 '/' Cc= 0.900

Primary OutFlow Max=2.39 cfs @ 12.09 hrs HW=56.51' (Free Discharge)
——=Culvert (Barrel Controls 2.39 cfs @ 3.76 fps)

Summary for Pond CB8: Prop CB

Inflow Area =	31,960 sf,	93.23\% Impervious,	Inflow Depth > 4.65" for 10-Yr event
Inflow	3.71 cfs @	12.09 hrs , Volume=	12,392 cf
Outflow	3.71 cfs @	12.09 hrs , Volume=	12,392 cf, Atten= 0\%, Lag= 0.0 min
Primary	3.71 cfs @	12.09 hrs , Volume=	12,392 cf

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=55.84' @ 12.09 hrs
Flood Elev= 59.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	$54.75{ }^{\prime}$	18.0" Round Culvert
			$\mathrm{L}=60.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 54.75' / 54.50' S=0.0042 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 1.77 sf

Primary OutFlow Max=3.61 cfs @ 12.09 hrs HW=55.82' (Free Discharge)
L-1=Culvert (Barrel Controls 3.61 cfs @ 3.74 fps)

Summary for Pond CB9: Prop CB

Inflow Area $=$	$2,655 \mathrm{sf}, 91.71 \%$ Impervious,	Inflow Depth $>4.63 "$	for $10-\mathrm{Yr}$ event
Inflow	$=$	$0.31 \mathrm{cfs} @$	12.09 hrs , Volume=
Outflow	$=$	$0.31 \mathrm{cfs} @$	12.09 hrs , Volume $=$
Primary	$=$	$0.31 \mathrm{cfs} @$	12.09 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=56.06' @ 12.09 hrs
Flood Elev= 59.50'

Device	Routing	Invert	Outlet Devices
\#1	Primary	$55.75{ }^{\prime}$	12.0" Round Culvert
			$\mathrm{L}=94.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 55.75' / 55.25' S=0.0053 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 0.79 sf

Primary OutFlow Max=0.30 cfs @ 12.09 hrs HW=56.05' (Free Discharge)
L-1=Culvert (Barrel Controls 0.30 cfs @ 2.26 fps)

Summary for Pond DMH1: Prop DMH

Inflow Area =	58,125	72.37\% Imperviou	Inflow Depth > 4.23" for 10-Yr event
Inflow	6.30 cfs @	12.09 hrs, Volume=	20,491 cf
Outflow	6.30 cfs @	12.09 hrs , Volume=	20,491 cf, Atten= 0\%, Lag= 0.0 min
Primary	6.30 cfs @	12.09 hrs , Volume=	20,491 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 55.69' @ 12.09 hrs
Flood Elev=60.30'
Device Routing Invert Outlet Devices
\#1 Primary 54.20 18.0" Round Culvert
$\mathrm{L}=56.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 54.20' / 53.90' S=0.0054 '/' Cc= 0.900
$\mathrm{n}=0.012$, Flow Area= 1.77 sf
Primary OutFlow Max=6.14 cfs @ 12.09 hrs HW=55.66' (Free Discharge)
L-1=Culvert (Barrel Controls 6.14 cfs @ 4.43 fps)

Summary for Pond DMH2: Prop DMH

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 49.15' @ 12.97 hrs
Flood Elev= 53.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	48.80'	24.0" Round Culvert
			$\mathrm{L}=55.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 48.80' / 46.70' S=0.0382 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=3.14$ sf

Primary OutFlow Max=0.76 cfs @ 12.97 hrs HW=49.15' (Free Discharge)
_1=Culvert (Inlet Controls 0.76 cfs @ 2.02 fps)

Summary for Pond DMH3: Prop DMH

Inflow Area =	75,305	78.11\% Impervious,	ow Depth > 3.00" for 10-Yr event
Inflow	0.76 cfs @	12.97 hrs, Volume=	18,799 cf
Outflow	0.76 cfs @	12.97 hrs , Volume=	$18,799 \mathrm{cf}$, Atten $=0 \%$ Lag $=0.0 \mathrm{~min}$
Primary	0.76 cfs @	12.97 hrs , Volume=	18,799 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 46.96' @ 12.97 hrs
Flood Elev= 53.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	46.60'	24.0" Round Culvert
			$\mathrm{L}=13.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 46.60' / 46.40' S= 0.0154 '/' Cc= 0.900

Primary OutFlow Max=0.76 cfs @ 12.97 hrs HW=46.96' (Free Discharge)
——=Culvert (Barrel Controls 0.76 cfs @ 2.99 fps)

Summary for Pond P1: Wet Pond 1

Inflow Area =	101,950 sf,	80.50\% Impervious,	Inflow Depth > 4.47" for 10-Yr event
Inflow	11.56 cfs @	12.09 hrs , Volume=	38,011 cf
Outflow	3.53 cfs @	12.40 hrs , Volume=	29,248 cf, Atten= 69\%, Lag= 19.0 min
Primary	3.53 cfs @	12.40 hrs , Volume=	29,248 cf

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=55.58' @ 12.40 hrs Surf.Area= 10,330 sf Storage= 18,851 cf
Flood Elev= 39.00' Surf.Area= 0 sf Storage= 0 cf
Plug-Flow detention time $=146.7 \mathrm{~min}$ calculated for $29,239 \mathrm{cf}$ (77% of inflow)
Center-of-Mass det. time $=87.5 \min (829.1-741.7)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	53.50	$35,971 \mathrm{cf}$	Custom Stage Data (Conic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
53.50	7,855	0	0	7,855
54.00	8,385	4,059	4,059	8,409
56.00	10,875	19,206	23,265	10,994
57.10	12,240	12,706	35,971	12,421

Device	Routing	Invert	Outlet Devices
\#1	Primary	50.60'	24.0" Round Culvert
			$\mathrm{L}=25.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= $50.60^{\prime} / 50.45^{\prime} \quad S=0.0060$ '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=3.14 \mathrm{sf}$
\#2	Device 1	50.70'	3.7" W x 0.3" H Vert. Orifice/Grate C= 0.600
\#3	Device 1	54.40'	10.0" W x 15.6" H Vert. Orifice/Grate C= 0.600
\#4	Device 1	$55.70{ }^{\prime}$	48.0 " $\times 48.0$ " Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads

Primary OutFlow Max=3.53 cfs @ 12.40 hrs HW=55.58' (Free Discharge)
$\mathcal{L 1}_{1}=$ Culvert (Passes 3.53 cfs of 30.19 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.08 cfs @ 10.63 fps)

- $3=$ Orifice/Grate (Orifice Controls 3.44 cfs @ 3.49 fps)

4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond P2: Wet Pond 2

Inflow Area =	75,305	pervious,	Inflow Depth > 4.43" for 10-Yr event
Inflow	8.49 cfs @	12.09 hrs , Volume=	27,792 cf
Outflow	0.76 cfs @	12.97 hrs , Volume=	18,799 cf, Atten= 91\%, Lag= 53.3 min
Primary	0.76 cfs @	12.97 hrs, Volume=	18,799 cf

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 54.66' @ 12.97 hrs Surf.Area= 9,222 sf Storage= 17,086 cf
Flood Elev=56.00' Surf.Area= 10,700 sf Storage $=30,396$ cf
Plug-Flow detention time $=238.2$ min calculated for $18,730 \mathrm{cf}$ (67% of inflow)
Center-of-Mass det. time= 168.2 min (911.4-743.2)

Volume	Invert	rt Avail.Storage Storage Description			
\#1	52.50	' 30,396 cf Custom Stage Data (Conic)Listed below (Recalc)			
Elevation (feet)	$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
52.50		6,460	0	0	6,460
54.00		8,530	11,207	11,207	8,580
56.00		10,700	19,189	30,396	10,859
Device	Routing	Invert	Outlet Devices		
\#1	Primary	49.70'	24.0" Round Culvert		
			L= 159.0'	, square edge	wall, $\mathrm{Ke}=0.500$
			Inlet / Outle $n=0.012,$	$\begin{aligned} & \text { ert }=49.70 \text { ' } 4 \\ & \text { Area }=3.14 \mathrm{sf} \end{aligned}$	$S=0.0050 \text { '/' Cc= } 0.900$
\#2	Device 1	49.80'	3.8 " W x 0.	Vert. Orifice	$C=0.600$
\#3	Device 1	$53.30 '$	5.0" Vert.	ce/Grate C=	
\#4	Device 1	54.70'	48.0" $\times 48.0$	oriz. Orifice/G	$C=0.600$
			Limited to w	flow at low head	

Primary OutFlow Max=0.76 cfs @ 12.97 hrs HW=54.66' (Free Discharge)
L- $=$ Culvert (Passes 0.76 cfs of 27.39 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.06 cfs @ 10.61 fps)
-3=Orifice/Grate (Orifice Controls 0.71 cfs @ 5.17 fps)
4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond P3: Wet Pond 3

Inflow Area	207,350 sf	72.13\% Impervious,	Depth >	29" for 10-Yr event
Inflow	22.83 cfs @	12.09 hrs , Volume=	74,174 cf	
Outflow	7.35 cfs @	12.39 hrs , Volume=	58,366 cf,	Atten= 68\%, Lag $=18.0$ min
Primary	7.35 cfs @	12.39 hrs, Volume=	58,366 cf	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs Peak Elev=52.09' @ 12.39 hrs Surf.Area= 16,112 sf Storage $=35,418 \mathrm{cf}$ Flood Elev=53.00' Surf.Area= $17,442 \mathrm{sf}$ Storage $=50,643 \mathrm{cf}$

Plug-Flow detention time $=137.9$ min calculated for 58,351 cf (79% of inflow)

Center-of-Mass det. time= $81.4 \min (827.4-746.0)$

Primary OutFlow Max=7.34 cfs @ 12.39 hrs HW=52.09' (Free Discharge)
—1=Culvert (Passes 7.34 cfs of 68.84 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.15 cfs @ 11.26 fps)
$-3=$ Orifice/Grate (Orifice Controls 7.20 cfs @ 4.11 fps)
-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond P3A: 36" RCP

Inflow Area = $\quad 437,860$ sf, 0.00% Impervious, Inflow Depth > 2.67" for 10-Yr event Inflow $=18.42$ cfs @ 12.46 hrs, Volume $=\quad 97,437 \mathrm{cf}$
Outflow = 18.41 cfs @ 12.47 hrs , Volume= $97,328 \mathrm{cf}$, Atten= 0%, Lag= 0.4 min
Primary $=18.41$ cfs @ 12.47 hrs, Volume $=\quad 97,328 \mathrm{cf}$
Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 55.92' @ 12.47 hrs Surf.Area= 461 sf Storage= 595 cf
Flood Elev=58.50' Surf.Area= 15,750 sf Storage $=20,108$ cf
Plug-Flow detention time $=1.1 \mathrm{~min}$ calculated for $97,328 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=0.7 \mathrm{~min}$ (813.1-812.4)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	53.80	$20,108 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
53.80	100	0	0
56.00	475	633	633
58.00	12,050	12,525	13,158
58.50	15,750	6,950	20,108

Device Routing Invert Outlet Devices
\#1 Primary $\quad 54.30^{\prime} \quad 36.0$ " Round Culvert w/ 6.0" inside fill
$\mathrm{L}=50.0^{\prime}$ RCP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 53.80' / 53.35' S=0.0090 '/' Cc= 0.900 $\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 6.29 sf

Primary OutFlow Max=18.34 cfs @ 12.47 hrs HW=55.92' (Free Discharge)
L-1=Culvert (Inlet Controls 18.34 cfs @ 4.03 fps)

Time span $=5.00-20.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 301$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: Road/Woods
 Flow Length=650'

Subcatchment1B: Pond

Subcatchment1C: Driveway

Subcatchment1D: Driveway

Subcatchment1E: Grass

Subcatchment1F: Parking

Subcatchment1G: Parking

Subcatchment1H: Parking

Subcatchment1I: Garage

Subcatchment1J: Parking

Subcatchment1K: Parking

Subcatchment1L: Parking

Subcatchment 1M: Building 1

Subcatchment2: Woods

Subcatchment3A: Existing

Subcatchment3AA: Parking

Flow Length=1,048' Slope=0.0120 '/' Tc=33.0 min CN=77 Runoff=25.39 cfs 135,077 cf
Runoff Area $=173,000$ sf 6.36% Impervious Runoff Depth $>4.03^{\prime \prime}$ Slope=0.0200 '/' Tc=15.9 min CN=80 Runoff=14.72 cfs 58,141 cf

Runoff Area $=16,500$ sf 31.82% Impervious Runoff Depth >5.01 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=89$ Runoff= $2.19 \mathrm{cfs} 6,886 \mathrm{cf}$

Runoff Area $=7,830$ sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=1.13 cfs $3,821 \mathrm{cf}$

Runoff Area $=7,000$ sf 100.00% Impervious Runoff Depth >5.86 " Tc=6.0 min CN=98 Runoff=1.01 cfs $3,416 \mathrm{cf}$

Runoff Area $=9,355$ sf 40.51% Impervious Runoff Depth $>5.11^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=90$ Runoff $=1.26 \mathrm{cfs} 3,987 \mathrm{cf}$

Runoff Area $=6,145$ sf 96.99% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.89 \mathrm{cfs} 2,999 \mathrm{cf}$

Runoff Area=8,390 sf 93.56% Impervious Runoff Depth >5.79 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=1.21 \mathrm{cfs} 4,046 \mathrm{cf}$

Runoff Area $=4,965$ sf 90.33% Impervious Runoff Depth >5.79 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.72 \mathrm{cfs} 2,394 \mathrm{cf}$

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth >5.86 " Tc=6.0 min CN=98 Runoff=0.24 cfs 805 cf

Runoff Area $=2,655$ sf 91.71% Impervious Runoff Depth >5.79 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.38 \mathrm{cfs} 1,280 \mathrm{cf}$

Runoff Area $=8,155$ sf 90.93% Impervious Runoff Depth >5.79 " Tc=6.0 min CN=97 Runoff=1.17 cfs $3,933 \mathrm{cf}$

Runoff Area $=13,905$ sf 93.53% Impervious Runoff Depth >5.79 " Tc=6.0 min CN=97 Runoff=2.00 cfs $6,705 \mathrm{cf}$

Runoff Area $=15,400$ sf 100.00% Impervious Runoff Depth >5.86 " Tc=6.0 min CN=98 Runoff=2.23 cfs 7,515 cf

Runoff Area=24,540 sf 9.56% Impervious Runoff Depth >4.05 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=80$ Runoff $=2.77 \mathrm{cfs} 8,272 \mathrm{cf}$

Runoff Area $=437,860$ sf 0.00% Impervious Runoff Depth >3.70 "

Runoff Area $=5,550$ sf 86.67% Impervious Runoff Depth $>5.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=0.79 \mathrm{cfs} 2,639 \mathrm{cf}$

Subcatchment3B1: Woods
Flow Length=698'

Subcatchment3B2: Woods

Flow Length=326'
Subcatchment3BB: Garage

Subcatchment3C: Driveway

Subcatchment3CC: Parking

Subcatchment3D: Driveway

Subcatchment3DD: Parking

Subcatchment3E: Driveway

Subcatchment3EE: Building 4

Subcatchment3F: Driveway

Subcatchment3FF: Courtyard

Subcatchment3G: Pond

Subcatchment3GG: Buiilding 2A

Subcatchment3H: Pond

Subcatchment3HH: Building 2B

Subcatchment31: Parking

Subcatchment3II: Building 3

Runoff Area=55,645 sf 0.00% Impervious Runoff Depth>3.92" Slope=0.0100 '/' Tc=24.6 min CN=79 Runoff=3.87 cfs 18,168 cf

Runoff Area $=68,025$ sf $\quad 0.00 \%$ Impervious Runoff Depth >3.84 " Slope $=0.0350$ '/' Tc=7.4 min CN=78 Runoff=7.04 cfs 21,743 cf

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.24 \mathrm{cfs} 805 \mathrm{cf}$

Runoff Area $=7,340$ sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=1.06 \mathrm{cfs} 3,582 \mathrm{cf}$

Runoff Area $=6,850$ sf 91.61% Impervious Runoff Depth >5.79 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff= $0.99 \mathrm{cfs} 3,303 \mathrm{cf}$

Runoff Area $=4,930$ sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.71 \mathrm{cfs} 2,406 \mathrm{cf}$

Runoff Area $=5,040$ sf 82.54% Impervious Runoff Depth >5.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=0.72 \mathrm{cfs} 2,396 \mathrm{cf}$

Runoff Area $=3,040$ sf 99.01% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.44 \mathrm{cfs} 1,484 \mathrm{cf}$

Runoff Area $=5,350$ sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.77 \mathrm{cfs} 2,611 \mathrm{cf}$

Runoff Area=2,305 sf 98.70\% Impervious Runoff Depth>5.86" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.33 \mathrm{cfs} 1,125 \mathrm{cf}$

Runoff Area $=2,915$ sf 13.55% Impervious Runoff Depth >4.69 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=86$ Runoff $=0.37 \mathrm{cfs} 1,138 \mathrm{cf}$

Runoff Area $=15,950$ sf 26.39% Impervious Runoff Depth $>4.90^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff=2.09 cfs $6,515 \mathrm{cf}$

Runoff Area=16,625 sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=2.40 \mathrm{cfs} 8,113 \mathrm{cf}$

Runoff Area=22,660 sf 36.12% Impervious Runoff Depth>5.01" Tc=6.0 min CN=89 Runoff=3.01 cfs $9,457 \mathrm{cf}$

Runoff Area $=15,225$ sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff= $2.20 \mathrm{cfs} 7,430 \mathrm{cf}$

Runoff Area $=13,150$ sf 86.69% Impervious Runoff Depth $>5.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=96$ Runoff $=1.88 \mathrm{cfs} 6,252 \mathrm{cf}$

Runoff Area $=19,600$ sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=2.84 \mathrm{cfs} 9,565 \mathrm{cf}$

Subcatchment3J: Courtyard

Subcatchment3K: Courtyard

Subcatchment3L: Parking

Subcatchment3M: Parking

Subcatchment3N: Garage

Subcatchment30: Parking

Subcatchment3P: Garage

Subcatchment3Q: Courtyard

Subcatchment3R: Courtyard

Subcatchment3S: Parking

Subcatchment3T: Courtyard

Subcatchment3U: Parking

Subcatchment3V: Parking

Subcatchment3W: Garage

Subcatchment3X: Parking

Subcatchment3Y: Parking

Subcatchment3Z: Parking

Runoff Area $=2,815$ sf 0.00% Impervious Runoff Depth >4.47 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=84$ Runoff=0.34 cfs $1,049 \mathrm{cf}$

Runoff Area $=14,820$ sf 41.33% Impervious Runoff Depth $>5.11^{\prime \prime}$ Tc=6.0 min CN=90 Runoff=2.00 cfs 6,316 cf

Runoff Area $=10,540$ sf 98.77% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff=$=1.52 \mathrm{cfs} 5,144 \mathrm{cf}$

Runoff Area=5,530 sf 92.95% Impervious Runoff Depth >5.79 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff=$=0.80 \mathrm{cfs} 2,667 \mathrm{cf}$

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth>5.86" Tc=6.0 min CN=98 Runoff=0.24 cfs 805 cf

Runoff Area $=5,540$ sf 84.84% Impervious Runoff Depth >5.71 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=0.79 \mathrm{cfs} 2,634 \mathrm{cf}$

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff $=0.24 \mathrm{cfs} 805 \mathrm{cf}$

Runoff Area $=10,030$ sf 25.02% Impervious Runoff Depth $>4.47^{\prime \prime}$ Tc=6.0 min CN=84 Runoff=1.23 cfs 3,736 cf

Runoff Area=7,980 sf 24.56% Impervious Runoff Depth>4.47" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=84$ Runoff=0.98 cfs 2,972 cf

Runoff Area=9,495 sf 84.41% Impervious Runoff Depth $>5.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff=$=1.36 \mathrm{cfs} 4,515 \mathrm{cf}$

Runoff Area=9,055 sf 14.96% Impervious Runoff Depth >4.26 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff $=1.07 \mathrm{cfs} 3,211 \mathrm{cf}$

Runoff Area=12,055 sf 94.90% Impervious Runoff Depth >5.79 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=1.74 \mathrm{cfs} 5,813 \mathrm{cf}$

Runoff Area=6,415 sf 78.02\% Impervious Runoff Depth>5.52" Tc=6.0 min CN=94 Runoff=0.90 cfs 2,952 cf

Runoff Area $=1,650$ sf 100.00% Impervious Runoff Depth >5.86 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.24 \mathrm{cfs} 805 \mathrm{cf}$

Runoff Area $=12,600$ sf 88.65% Impervious Runoff Depth $>5.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=1.80 \mathrm{cfs} 5,991 \mathrm{cf}$

Runoff Area $=11,630$ sf 90.07% Impervious Runoff Depth $>5.71^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff=$=1.67 \mathrm{cfs} 5,530 \mathrm{cf}$

Runoff Area=11,020 sf 87.89% Impervious Runoff Depth>5.71" Tc=6.0 min CN=96 Runoff=1.58 cfs 5,240 cf

Runoff Area $=1,535$ sf 0.00% Impervious Runoff Depth >3.84 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=78$ Runoff $=0.17 \mathrm{cfs} 491 \mathrm{cf}$

Runoff Area $=18,870$ sf 0.00% Impervious Runoff Depth >3.63 " Flow Length=295' Tc=10.3 min CN=76 Runoff=1.69 cfs $5,705 \mathrm{cf}$

Reach DP1: Design Point - Offsite Flow

Reach DP2: Design Point - Offsite Flow

Reach DP3: Design Point - Stream

Inflow=21.23 cfs 96,918 cf
Outflow=21.23 cfs 96,918 cf
Inflow=2.77 cfs 8,272 cf Outflow=2.77 cfs 8,272 cf

Inflow=43.56 cfs 276,929 cf Outflow=43.56 cfs 276,929 cf

Inflow=0.17 cfs 491 cf Outflow=0.17 cfs 491 cf

Inflow=1.69 cfs $5,705 \mathrm{cf}$ Outflow=1.69 cfs 5,705 cf

Reach R3A: Swale Avg. Flow Depth=1.11' Max Vel=3.17 fps Inflow=25.19 cfs $134,960 \mathrm{cf}$ n=0.040 L=375.0' S=0.0089 '/' Capacity=21.06 cfs Outflow=25.04 cfs 134,537 cf

Reach R3B: Stream Avg. Flow Depth=1.44' Max Vel=5.55 fps Inflow=43.70 cfs 277,305 cf n=0.040 L=280.0' S=0.0232 '/' Capacity=46.72 cfs Outflow=43.56 cfs 276,929 cf

Pond CB1: Prop CB

Pond CB10: Prop CB

Pond CB11: Prop CB

Pond CB12: Prop CB

Pond CB13: Prop CB

Pond CB14: Prop CB

Pond CB15: Prop CB

Pond CB16: Prop CB

Peak Elev=56.87' Inflow=1.01 cfs 3,416 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=18.0$ ' $\mathrm{S}=0.0056$ '/' Outflow=1.01 cfs $3,416 \mathrm{cf}$

Peak Elev=55.33' Inflow=1.06 cfs 3,582 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=18.0$ ' $\mathrm{S}=0.0056$ '/' Outflow=1.06 cfs $3,582 \mathrm{cf}$

Peak Elev=55.26' Inflow=1.77 cfs 5,988 cf 12.0" Round Culvert n=0.012 L=150.0' $\mathrm{S}=0.0067$ '/' Outflow=1.77 cfs 5,988 cf

Peak Elev=55.45' Inflow=0.99 cfs 3,303 cf 12.0" Round Culvert n=0.012 L=30.0' S=0.0050 '/' Outflow=0.99 cfs 3,303 cf

Peak Elev=55.41' Inflow=1.71 cfs 5,700 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=69.0$ ' $\mathrm{S}=0.0051$ '/' Outflow=1.71 cfs $5,700 \mathrm{cf}$

Peak Elev=54.87' Inflow=2.15 cfs 7,183 cf 15.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=18.0$ ' $\mathrm{S}=0.0056$ '/' Outflow=2.15 cfs $7,183 \mathrm{cf}$

Peak Elev=55.25' Inflow=6.76 cfs 22,521 cf 18.0" Round Culvert n=0.012 L=24.0' S=0.0062 '//' Outflow=6.76 cfs 22,521 cf

Peak Elev=57.38' Inflow=1.67 cfs 5,530 cf 12.0" Round Culvert n=0.012 L=145.0' S=0.0052 '/' Outflow=1.67 cfs 5,530 cf

Pond CB17: Prop CB

Pond CB18: Prop CB

Pond CB19: Prop CB

Pond CB2: Prop CB

Pond CB20: Prop CB

Pond CB21: Prop CB

Pond CB22: Prop CB

Pond CB23: Prop CB

Pond CB24: Prop CB

Pond CB25: Prop CB

Pond CB26: Prop CB

Pond CB27: Prop CB

Pond CB28: Prop CB

Pond CB29: Prop CB

Pond CB3: Prop CB

Pond CB30: Prop CB

Pond CB31: Prop CB

Peak Elev=56.64' Inflow=3.24 cfs 10,769 cf
15.0" Round Culvert $n=0.012$ L=115.0' $S=0.0052$ '/' Outflow=3.24 cfs 10,769 cf

Peak Elev=56.16' Inflow=4.28 cfs 14,213 cf 15.0" Round Culvert $n=0.012$ L=202.0' $S=0.0050$ '/' Outflow=4.28 cfs 14,213 cf

Peak Elev=56.84' Inflow=3.18 cfs 10,402 cf 15.0" Round Culvert n=0.012 L=122.0' S=0.0049 '/' Outflow=3.18 cfs 10,402 cf

Peak Elev=56.98' Inflow=3.41 cfs 11,224 cf 15.0" Round Culvert n=0.012 L=151.0' S=0.0050 '/' Outflow=3.41 cfs 11,224 cf

Peak Elev=56.40' Inflow=6.81 cfs 22,252 cf 18.0" Round Culvert n=0.012 L=94.0' S=0.0069 '/' Outflow=6.81 cfs 22,252 cf

Peak Elev=56.86' Inflow=1.14 cfs 3,749 cf 12.0" Round Culvert n=0.012 L=93.0' S=0.0172 '/' Outflow=1.14 cfs 3,749 cf

Peak Elev=56.09' Inflow=0.34 cfs 1,049 cf
12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=73.0^{\prime} \mathrm{S}=0.0247$ '/' Outflow=0.34 cfs 1,049 cf

Peak Elev=54.75' Inflow=9.95 cfs 32,317 cf 24.0" Round Culvert n=0.012 L=79.0' S=0.0215 '/' Outflow=9.95 cfs 32,317 cf

Peak Elev=54.75' Inflow=2.23 cfs 7,301 cf 12.0" Round Culvert n=0.012 L=124.0' S=0.0105 '/' Outflow=2.23 cfs 7,301 cf

Peak Elev=53.14' Inflow=25.71 cfs 84,525 cf 36.0" Round Culvert $\mathrm{n}=0.012$ L=20.0' $\mathrm{S}=0.0050$ '/' Outflow=25.71 cfs $84,525 \mathrm{cf}$

Peak Elev=57.53' Inflow=1.80 cfs 5,991 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=110.0$ ' $\mathrm{S}=0.0050$ '//' Outflow=1.80 cfs $5,991 \mathrm{cf}$

Peak Elev=56.88' Inflow=2.95 cfs 9,748 cf 15.0" Round Culvert n=0.012 L=154.0' S=0.0049 '/' Outflow=2.95 cfs 9,748 cf

Peak Elev=56.40' Inflow=1.07 cfs 3,211 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=73.0$ ' $\mathrm{S}=0.0055$ '/' Outflow=1.07 cfs 3,211 cf

Peak Elev=56.24' Inflow=5.75 cfs 18,773 cf 18.0" Round Culvert $n=0.012$ L=182.0' $S=0.0049$ '/' Outflow=5.75 cfs 18,773 cf

Peak Elev=56.96' Inflow=1.26 cfs 3,987 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=20.0^{\prime} \mathrm{S}=0.0050$ '/' Outflow=1.26 cfs 3,987 cf

Peak Elev=55.48' Inflow=7.11 cfs 23,287 cf 18.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=135.0^{\prime} \mathrm{S}=0.0052$ '/' Outflow=7.11 cfs 23,287 cf

Peak Elev=54.45' Inflow=10.98 cfs 36,292 cf 24.0" Round Culvert n=0.012 L=86.0' S=0.0052 '/' Outflow=10.98 cfs 36,292 cf

Pond CB32: Prop CB

Pond CB4: Prop CB

Pond CB5: Prop CB

Pond CB6: Prop CB

Pond CB7: Prop CB

Pond CB8: Prop CB

Pond CB9: Prop CB

Pond DMH1: Prop DMH

Pond DMH2: Prop DMH

Pond DMH3: Prop DMH

Pond P1: Wet Pond 1

Pond P2: Wet Pond 2

Pond P3: Wet Pond 3

Peak Elev=54.00' Inflow=12.01 cfs 39,764 cf 24.0" Round Culvert n=0.012 L=110.0' S=0.0050 '//' Outflow=12.01 cfs 39,764 cf

Peak Elev=56.64' Inflow=7.64 cfs 25,445 cf 18.0" Round Culvert n=0.012 L=80.0' S=0.0050 '//' Outflow=7.64 cfs 25,445 cf

Peak Elev=57.38' Inflow=0.89 cfs 2,999 cf 12.0" Round Culvert n=0.012 L=7.0' S=0.0071 '/' Outflow=0.89 cfs 2,999 cf

Peak Elev=57.57' Inflow=2.10 cfs 7,045 cf 12.0" Round Culvert n=0.012 L=152.0' $\mathrm{S}=0.0049$ '/' Outflow=2.10 cfs $7,045 \mathrm{cf}$

Peak Elev=56.65' Inflow=3.05 cfs 10,244 cf 15.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=125.0$ ' $\mathrm{S}=0.0052$ '/' Outflow=3.05 cfs $10,244 \mathrm{cf}$

Peak Elev=56.00' Inflow=4.61 cfs 15,457 cf 18.0" Round Culvert n=0.012 L=60.0' S=0.0042 '//' Outflow=4.61 cfs 15,457 cf

Peak Elev=56.09' Inflow=0.38 cfs 1,280 cf 12.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=94.0^{\prime} \mathrm{S}=0.0053$ '//' Outflow=0.38 cfs $1,280 \mathrm{cf}$

Peak Elev=56.02' Inflow=7.95 cfs 26,001 cf 18.0" Round Culvert n=0.012 L=56.0' $\mathrm{S}=0.0054$ '/' Outflow=7.95 cfs 26,001 cf

Peak Elev=49.61' Inflow=3.69 cfs 25,142 cf 24.0" Round Culvert n=0.012 L=55.0' S=0.0382 '//' Outflow=3.69 cfs 25,142 cf

Peak Elev=47.49' Inflow=3.69 cfs 25,142 cf 24.0" Round Culvert $\mathrm{n}=0.012 \mathrm{~L}=13.0$ ' $\mathrm{S}=0.0154$ '//' Outflow=3.69 cfs $25,142 \mathrm{cf}$

Peak Elev=55.82' Storage=21,363 cf Inflow=14.44 cfs 47,788 cf Outflow=6.79 cfs $38,777 \mathrm{cf}$

Peak Elev=54.84' Storage=18,780 cf Inflow=10.62 cfs 35,024 cf Outflow=3.69 cfs 25,142 cf

Peak Elev=52.43' Storage=40,885 cf Inflow=28.73 cfs 93,982 cf Outflow=12.83 cfs 77,716 cf

Peak Elev=56.33' Storage=1,104 cf Inflow=25.39 cfs 135,077 cf

Pond P3A: 36" RCP

 36.0" Round Culvert w/ 6.0 " inside fill $\mathrm{n}=0.012 \mathrm{~L}=50.0$ ' $\mathrm{S}=0.0090$ '/' Outflow=25.19 cfs $134,960 \mathrm{cf}$Total Runoff Area $=1,164,080$ sf Runoff Volume $=424,391$ cf Average Runoff Depth $=4.37$ "
$\mathbf{7 3 . 9 0 \%}$ Pervious $=\mathbf{8 6 0 , 2 9 0} \mathbf{s f} \quad \mathbf{2 6 . 1 0 \%}$ Impervious $=\mathbf{3 0 3 , 7 9 0} \mathbf{~ s f}$

APPENDIXI
 PRE- AND POST-DEVELOPMENT WATERSHED PLANS

APPENDIX J
 EFFECTIVE TREATMENT CALCULATIONS

[^0]: ${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
 Please refer to NOAA Atlas 14 document for more information.

[^1]: Primary OutFlow Max=19.79 cfs @ 12.57 hrs HW=56.51' (Free Discharge)
 ——1=Culvert (Inlet Controls 19.79 cfs @ 6.30 fps)
 -2=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

