

TOWN OF KITTERY

200 Rogers Road, Kittery, ME 03904 Telephone: (207) 475-1329 Fax: (207) 439-6806

KITTERY TOWN COUNCIL

COUNCIL CHAMBERS

January 10, 2022

6:00PM

Council Chambers remains closed at this time. The public may also participate in the meeting via Zoom webinar. **Register in advance for the webinar at** <u>https://us02web.zoom.us/webinar/register/WN_-R0TdFLkSVq4Jf4vQ42wlA</u>

After registering, you will receive a confirmation email containing information about joining the webinar. Webinar participants will be able to submit questions and comments during a public hearing.

The public may also submit public comments via email, US Mail, or by dropping off written comments at the Town Hall. Emailed comments should be sent to TownComments@kitteryme.org

Comments received by **noon on the day of the meeting** will become part of the public record and may be read in whole or in summary by the Council Chair.

- 1. Call to Order
- 2. Introductory
- 3. Pledge of Allegiance
- 4. Roll Call
- 5. Agenda Amendment and Adoption
- 6. Town Manager's Report
- 7. Acceptance of Previous Minutes
 - December 13, 2021 Regular Meeting
- 8. Interviews for the Board of Appeals and Planning Board

- 9. All items involving the town attorney, town engineers, town employees or other town consultants or requested offices.
 - a. (010122-01) The Kittery Town Council moves to receive a presentation from Matthew Young to discuss PFAS at the KRRF.

10. PUBLIC HEARINGS

- a. (010122-02) The Kittery Town Council moves to approve a new Victualer's License application from Carl's Meat Market, located at 25 State Road, Kittery.
- b. (010122-03) The Kittery Town Council moves to approve a new Victualer's License application from The Golden Harvest, located at 47 State Road, Kittery.

11. DISCUSSION

- a. Discussion by members of the public (three minutes per person).
- b. Chairperson may read written comments into the record.
- c. Chairperson's response to public comments.
- 12. UNFINISHED BUSINESS
- 13. NEW BUSINESS
 - a. Donations/gifts received for Council disposition

(010122-04) The Kittery Town Council moves to accept a donation in the amount of \$100.00 from Meetinghouse Village to be deposited into account #2063 KCC donations.

- b. (010122-05) The Kittery Town Council moves to accept a donation in the amount of \$154.00 from Hannaford's Bloomin' 4 Good Program to be deposited into account #2063 KCC donations.
- c. (010122-06) The Kittery Town Council moves to accept a donation in the amount of \$10,000 from York Hospital to be deposited in Kittery Community Center account #5003.
- d. (010122-07) The Kittery Town Council moves to accept a donation in the amount

of \$85,000 from RPL Corporation to be deposited into Rice Public Library account #4060/43602.

- e. (010122-08) The Kittery Town Council moves to finalize and approve their annual and budget goals.
- f. (010122-09) The Kittery Town Council moves to schedule a public hearing on January 24, 2022 on Title 2 Amendments Paid Time Off.
- g. (010122-10) The Kittery Town Council moves to schedule a public hearing on January 24, 2022 to update Titles 5 and 13 to conform with Title 16.
- h. (010122-11) The Kittery Town Council moves to schedule a public hearing on February 14, 2022 on Title 16 Marijuana Zoning Amendments.
- i. (010122-12) The Kittery Town Council moves to approve a renewal Liquor License application from Woodland Farms Brewery, located at 306 US Route 1 Kittery.
- j. (010122-13) The Kittery Town Council moves to approve a renewal Liquor License application from 518 Noodle Bar located at 518 US Route 1, Kittery.
- k. (010122-14) The Kittery Town Council moves to appoint Celestyne Bragg to the Economic Development Committee for a three-year term to expire 12/31/2024.
- I. (010122-15) The Kittery Town Council moves to approve a request from Kittery Little League to hang a banner across Rogers Road from 2/1/2022 until 3/1/2022.
- 14. COUNCILOR ISSUES OR COMMENTS
- 15. COMMITTEE AND OTHER REPORTS
 - a. Communications from the Chairperson
 - b. Committee Reports
- 16. EXECUTIVE SESSION
- 17. ADJOURNMENT

Posted: January 6, 2022

TOWN OF KITTERY

Office of the Town Manager 200 Rogers Road, Kittery, ME 03904 Telephone: 207-475-1329 Fax: 207-439-6806 kamaral@kitteryme.org

Town Manager's Report to the Town Council January 10, 2022

1. **COVID Update** –York County's positivity rate continues to move upwards, with the current rate being approximately 12%. Area hospitals are capping patients and diverting to other facilities as they grapple with the holiday surge.

The Kittery Fire Department is hosting its third **booster vaccination clinic on January 12, 10AM to 6PM**. This is open to the public, age 12 years old and up. The clinic is first-come-first serve. The Moderna and Pfizer vaccine will be available, as well as a small number of initial vaccinations for those still seeking their first vaccination shot. Patients are asked to please remember to bring their vaccination card with them to the clinic.

We are reviewing scheduled events and activities through February to determine if any adjustments, postponements or cancellations are warranted due to the surge. Our primary focus is on larger indoor gatherings and events.

The best ways to reduce the chance of getting or spreading COVID is to wear a mask in public spaces, avoid large indoor gatherings, and stay home if you feel sick. The best way to reduce the chance of hospitalization and death is to get the vaccine and booster shots. For more information about getting vaccinated please visit <u>https://www.maine.gov/covid19/vaccines</u>.

2. York County Jail Diversion – I have received some questions regarding the criminal detention during COVID, specifically associated with an incident on Wyman and Mendum Ave last week.

In 2020, Sheriff William King issued modifications to the York County Jail's intake guidelines for prisoners in response to COVID and safety requirements. The modifications restrict intake of prisoners to primarily violent or felony crimes, domestic violence, and Class A drug charges.

The modifications have created new challenges for Kittery Police Officers. Despite this, the Officers remain ever present and engaged in addressing the public safety needs of the community. They are issuing summons and are using alternative techniques on the scene to remove public safety risks.

3. 2021 Year End Goals Report – Please see attached.

Upcoming Dates:

- Dog License Renewals Deadline January 31, Town Hall and <u>www.kitteryme.gov</u>
- COVID Booster Clinic January 12, 10AM to 6PM, Gorges Road Fire Station
- Town Hall Closed MLK Holiday January 17

Respectfully Submitted,

Kendra Amaral Town Manager

TOWN COUNCIL GOALS 2021

Work together respectfully toward consensus, capitalizing on our experiences and diversity.

Address proposals for Charter, Ordinance, and Policy changes for improving efficiency and effectiveness of the Town operations including:

- Title 5 Business License Regulations Postponed to 2022
- General Direct Issuance of Civil Penalties for Ordinance Violations Partial implementation for high frequency violations such as dog waste, property maintenance.

Advance the Comprehensive Plan 5 Year Action Plan, specifically the following:

- Climate Adaptation Study (9.1, 9.2)
 - Develop and implement climate adaptation, flood resiliency and green-house gases strategies and ordinances- ordinance drafted, greenhouse gas inventory complete, composting launched at KRRF, funding for Climate Action Plan development allocated.
- Reduce dog and horse waste in open spaces (2.2)
 - Expand/enhance Title 6 Animal Control ordinance Phase 2 ordinances adopted by Council. New signage at Fort Foster ordered, Rogers Park signage in design, Seapoint signage awaiting completion of beach fires initiative.
- Ensure Town planning processes are open, transparent, informative, inclusive, respectful and welcoming (7.1)
 - Complete Title 16 recodification to achieve development goals Recommended by Planning Board for adoption. Council public hearing scheduled for January 24, 2022.
 - Equip Town Hall to support ongoing hybrid and remote meetings- Digital upgrade of Council Chambers bid being released January 6. Council adopted remote meeting policy; Conference Room A actively used for hybrid meetings.
- Develop long range plan for the library (7.2)
 - Advance construction project Construction to be complete by end of March 2022.
 - Begin five-year strategic plan for Library Library Adv Com meeting Jan 20 to begin discussion of strategic planning.
- Guide development to areas already served by public utilities, resulting in more efficient and cost-effective use of these public services (7.3)
 - Develop zoning amendments to uses, dimensional and performance standards that advantage development around utilities. – Adopted for C zones, draft ordinances awaiting adoption of recodification to bring forward amendments for business local zones, solar farm, and shoreland overlay.
- Continue to support healthy lifestyle choices and wellness by improving walking and biking and infrastructure (5.2)
 - Launch pedestrian and bicycle master plan. Master plan complete and in process of being incorporated into Capital Improvement Plan.
- Develop a plan for Town facilities and property owners to transition to low and zero impact energy sources (9.2)
 - Develop sustainable ordinances. ordinances drafted and awaiting adoption of recodification to bring forward.

 Identify Community Solar opportunities. – Agreement executed, solar project implementation expected in 2022. In discussion with KWD to include in net energy billing credit agreement.

Adopt a budget that is progressive, responsible, responsive to community expectations and needs, and visionary – moving the community forward. - **Complete**

Give attention to Councilor expressed priorities, including:

- Identify viable properties and an action plan for the re-use or disposition of Town controlled property including (but not limited to):
 - Walker Street Fire Station Bid issued for expansion of Gorges Rd fire station, surplus of Walker Street will occur once Gorges Rd project complete.
 - Taylor Building In negotiations with KAA for sale.
 - Old Post Properties Brownfields assessment finished. Surplus by RFP for affordable housing approved by Council. RFP being finalized.
 - 2 Walker Street postponed to 2022

TOWN MANAGER GOALS 2021

Support long term planning and growth management objectives:

- Finish the Title 16 recodification process and develop a plan to address identified policy issues Council public hearing scheduled for January 24, 2022.
- Propose TIF amendments to provide relief to taxpayers and support desired growth assessment underway and associated with affordable housing and transportation initiatives.
- Develop zone amendments to promote the increase of housing stock C zones complete. BL ready for Planning Board. Funds allocated from ARPA for ADU grant program, and surplus of two tax acquired properties for deed-restricted affordable housing projects.
- Advance JLUS Implementation effort and recommendations from Study **Phase 2 complete.** Phase 3 greenlighted and funding being assembled to design and implement micro-transit, parkand-rides, climate resiliency planning, and housing generation.

Enhance Financial Stability

- Produce a 2022 budget that seeks to respond to service expectations of the community, and appropriately addresses unmet needs and revenue changes resulting from COVID **Complete**
- Finish comprehensive technology master plan to inform the capital improvement program **Complete**
- Integrate sustainability and climate change priorities into Capital Improvement Program Complete

Continue to improve organizational efficiency through implementation of technology, and recommended amendments to the Charter, Town Ordinance, and Policy. ongoing

Support Council's efforts to implement the Comprehensive Plan 5 Year Action Plan (see Council Goals) – See update.

Town Assets and Infrastructure

- Develop recommendations and action plans for the reuse or disposition of various town owned or tax-acquired properties – Approved surplus for affordable housing: 42-44 Old Post and 18-20 Phelps Street, surplus outright approved for 73 Rogers Road.
- Develop a sidewalk master plan for replacement, enhancement and addition of town sidewalks **Complete.**

Develop and Sustain the Professional Staff

- Complete contract negotiations in a timely fashion Contracts ratified for four of the seven units.
- Plan for addressing increasing demands for police, fire, public works services, and code enforcement. Fire Department transitioned to hybrid Call/FT Firefighter, adding part-time Social Worker to Police through regional partnership.

TOPIC AREA	GOAL	ACTION ITEMS	STATUS
PRIMARY OBJEC	TIVES		
2 – Natural Resources & Recreation	Establish mechanisms to protect visual assets such as creating a photographic documentation of scenic vistas and establishing an historic preservation committee to create a comprehensive inventory of historic resources . These are the first steps in helping to protect and promote those visual assets that contribute to Kittery's uniqueness. (2.1)	 Conduct an inventory of historic resources, including landscapes, archaeological resources and buildings. 	
2 – Natural Resources & Recreation	Review existing hunting regulations and provide public education regarding these to improve the safety of residents especially in the Town Forest, while at the same time protecting resident's right to carry firearms and hunt. (2.2)	 Create signage about hunting safety and regulations at Town Forest & Rogers Park 	Title 6 amendments complete. New signage ordered for Fort Foster, in design for Rogers Park and Seapoint Beach

TOPIC AREA	GOAL	ACTION ITEMS	STATUS
3 - Economic Development	Engage in targeted outreach to business and industry sectors marketing Kittery's economic development areas. (3.5)	 Improve town website and have routine maintenance. Identify similar business or industry partners who may have insights on what businesses in those sectors are looking for in terms of amenities, infrastructure, costs/revenues, workforce characteristics, etc. Talk with brokers and real estate agents about marketing property in Kittery. Work with land owners to actively market properties through websites and brokers. 	Website updated, expanded use of email and social media to share info. Website look refreshed again in 2021. Kittery is a member of the Chamber of Commerce and serves on the Exec Board. Regular meetings with Foreside Business Group and outreach to Rte 1 and Bypass businesses. Working with the Urban Land Institute through the JLUS effort to connect with developers interested in advancing Kittery's Comp Plan development goals.

TOPIC AREA	GOAL	ACTION ITEMS	STATUS
4 – Housing	Undertake to complete a Comprehensive town-wide Housing Plan that will document existing supply and identify needs and ways of meeting these, including methods for encouraging the development of affordable housing (e.g. creation of new types of housing, including workforce housing, and housing for seniors wishing to downsize, etc.). (4.1)	 Create a scope and request for proposals to undertake a comprehensive town-wide housing plan. Plan should include in-depth analysis of housing supply, demand, and strategies to encourage a variety of housing types and prices points. Explore possibility of local regional planning commission undertaking the study on behalf of the town. 	Affordable Housing ordinances implemented; Addtl zone amendments ready for public hearings. Housing Com established. Housing fund established and receiving seed funds. Two tax-acquired properties approved for surplus for deed-restricted affordable housing. ADU grant pilot program approved.

ΤΟΡΙϹ			
AREA 5 – Transportation	GOAL Evaluate Town-wide current parking conditions and policies and revise to meet development goals by improving management of existing spaces and exploring shared parking and other strategies. (5.4)	ACTION ITEMS Review and revise town code to support goal.	STATUSTitle 10 revisions completedfor Foreside. Badger's Islandcompleted.JLUS complete. JLUSImplementation Phase 1project complete. JLUSImplementation Phase 2 grantapplication in development.Walker/Wentworth revisionsenacted by Council.Parking revisions complete forPocahontas. Parking revisionscomplete for Foreside.
7 - Municipal Facilities, Services, & Fiscal Capacity	Increase and improve communication with Town residents. Using a variety of modes including the internet and cable TV in innovative ways will help to keep residents more informed and connected to town government. (7.1)	 Become more efficient by streamlining the permitting process. Update town's GIS maps and establish a system for continuous update. Explore ways of reaching the largest number of residents and conduct outreach to actively recruit volunteers, especially representation of demographics that are currently missing or underrepresented. Develop clear messaging regarding what the boards and committees do, roles and expectations and information regarding opportunities and benefits of participation. 	Online permitting launched. Implemented use of social media to expand resident participation on Boards. GIS upgrade complete. Use of Channel 22, FB, Twitter, and website expanded. Council Chambers and Conference Rm A upgraded to support hybrid (in- person/remote) meetings.

ΤΟΡΙΟ			
AREA	GOAL	ACTION ITEMS	STATUS
7 - Municipal Facilities, Services, & Fiscal Capacity	Educate residents about town planning roles and processes and ensure that planning and town management processes are open, transparent, informative, inclusive, respectful and welcoming. (7.1)	 Explore the use of communication technologies to increase the communication between residents and Town government. Revise Town Code so that regulations are clear and easy to use and are aligned with Comprehensive Plan goals. 	Use of Social Media, Channel 22, and website increased. Website refresh completed. SeeClickFix implementation in planning stages. Title 16 recodification scheduled for public hearing. Finalizing policy for reverse 911 implementation. Reverse 911 software quotes received and funding being identified.
7 - Municipal Facilities, Services, & Fiscal Capacity	Develop a long-range plan for the library including where the library will be located (renovation and expansion on existing site, new building on another site) and whether the Library should become a Town Department. (7.2)	 Explore possibilities and compare and contrast advantages and disadvantages of sites being considered for Library facility. Consider converting the Library to a Town Department. Support Library Director's efforts to support literacy, digitize the library's collection of photographs, and to provide support and programming for the increasing elderly population. 	Library expansion and renovation scheduled for completion at the end of March 2022. Library is now a Town Department. Library Adv Com established.

TOPIC			
AREA	GOAL	ACTION ITEMS	STATUS
7 - Municipal Facilities, Services, & Fiscal Capacity and 8 – Land Use	Guide development to areas already served by public utilities, resulting in a more efficient and cost-effective use of these public services. (7.3) (8.1)	 Direct new development where feasible, to vacant or underutilized sites and buildings; direct development away from areas with natural constraints, key wildlife or open space corridors, protected shorelands, and areas where public utilities are not yet available and would be costly to extend. Add utilities map to GIS. Establish efficient permitting procedures, especially in areas designated as "growth areas" in Future Land Use Plan. 	Mixed Use Neighborhood rezoning complete. Affordable housing ordinance enacted. GIS upgrade complete.
8 – Land Use	Review, update and incorporate where appropriate, the recommendations from the Foreside Forums. Residents have expressed much enthusiasm for recent improvements in the Foreside and support for future infill development that is appropriate in scale and activity. (8.3)	 Study the opportunities and challenges associated with the Foreside area to determine if the zoning district boundaries should change in the future. Identify desired uses. Identify the regulations and infrastructure needed to support the future of the area. 	Zoning review underway in conjunction with affordable housing effort. Mini study being completed for Old Post area. Reviewing tax acquired and Town owned property for potential beneficial infill. Two parcels approved for affordable housing.

TOPIC			
AREA	GOAL	ACTION ITEMS	STATUS
9 - Coastal	Complete a climate adaptation	Complete a Climate Adaption Study.	Climate adaptation committee
Community	study to plan for the potential		formed. Flood resiliency
Resilience	impacts of sea level rise and prepare		checklist complete. Flood
	for extreme weather events (9.1)		vulnerability assessment
			complete. Kittery joined with
			regional climate adaptation
			planning. Kittery a member of
			ICLEI. EV charging station
			grant application in process.
			Incorporating sustainability
			evaluation into CIP. Town
			leasing two EVs for fleet. Solar
			net energy billing credit
			project approved. Community
			GHG Inventory complete.

TOPIC AREA	GOAL	ACTION ITEMS	STATUS
SECONDARY OBJ	ECTIVES		
2- Natural Resources & Recreation	Working with the Kittery Land Trust, develop a strategy for open space acquisition , setting priorities for parcels to be included. (2.1)	 Complete an inventory of open spaces in Kittery. Consider purchase of unprotected open spaces. Create/amend zoning to prohibit destruction of wetlands (high value, wildlife corridors) and add farmland and unprotected open space for review. Revisit the inventory of scenic views defined in the 1999 Comprehensive Plan Update, making a photographic record (survey) and updating the inventory, as needed. 	Shoreland overlay zoning amendments drafted.
2- Natural Resources & Recreation and 8 – Land Use	Protect existing open lands , including farmlands and wetlands from over-development by implementing effective strategies such as larger minimum lot sizes in the rural residential zone. As one way of preserving Kittery's rural character, review and revise the cluster zoning ordinance and provide incentives for developers to use the ordinance. (2.1) (8.1) (8.2)	Review/Revise Cluster Zoning Law	Review of amendments underway.

TOPIC				
AREA	GOAL		ACTION ITEMS	STATUS
2- Natural Resources & Recreation	Reduce dog and horse waste at area open spaces through enhanced enforcement and public education. (2.2)	•	Increase awareness regarding enforcement of pet waste ordinance, support the efforts of the Police. Establish Volunteer Dog Patrol.	Hired full time ACO. Phase 2 Title 6 update complete.
2 – Natural Resources & Recreation and 5 – Transportation and 6 – Marine Resources and 7 - Municipal Facilities, Services, & Fiscal Capacity	Continue to support healthy lifestyle choices and wellness by increasing recreational opportunities for all ages, evaluating the Athletic Fields Master Plan, improving walking and biking infrastructure so that it is safe and pleasant, ensuring appropriate recreational access to the waterfront , and increasing awareness of existing resources. Updating the Sidewalks Conditions Report (5.2.1) and developing a Bike Plan are among the specific steps recommended (2.2) (2.2.6) (5.2) (6.1) (7.2)	•	Monitor athletic field planning process. Evaluate opportunities for providing bike infrastructure on roads including bike lanes, wide shoulders and "Share the Road" signs (ex. "sharrows" and stencils). Develop a sidewalk and pedestrian plan including updating sidewalk conditions report and inventory to identify existing conditions and gaps in the pedestrian network. Identify opportunities for new trails. Work with schools, Community Center and Town Departments to prioritize sidewalk projects on town- owned facilities and recreational areas. Update street and publicly owned shade tree inventory.	Athletic Field Master Plan accepted, Committee working on updating it to reflect completed work. Sidewalk master plan development underway. Bicycle/Pedestrian Master Plan complete and being incorporated into CIP.

TOPIC			
AREA	GOAL	ACTION ITEMS	STATUS
3 - Economic Development	Collaborate with property owners in the area around the Route 1 corridor to identify strategies towards making mutually beneficial changes to the area including exploring options to redevelop commercial properties with mixed use (e.g. retail, housing, office) and consider zoning amendments such as an overlay district to provide more flexibility concerning permitted uses. (3.3) (8.5)	 Draft a scope of work for planning, market analysis, and transportation engineering services to re-envision the Route 1 area. 	New grant opportunities being evaluated. Urban Land Institute Study (part of JLUS) complete.
6 – Marine Resources and 8 – Land Use	Continue to support Kittery's maritime based economy including the fishing and shell fishing industry by maintaining access to the working waterfront and creating innovative avenues to better connect fishing to the local economy. (6.2) (8.4)	 Conduct poll/outreach/meetings with commercial fishermen and boat operators to determine need (KPA). Conduct poll/outreach/meetings with commercial fishermen and boat operators to identify areas where navigation is difficult or impossible due to shallow depths (KPA). 	Survey on Pepperrell Cove depths completed. Identifying "piggy back" projects for cost reduction. Identifying funding for engineering. RFP for engineering being developed and ACOE application for FNP dredge being developed

TOPIC				
AREA	GOAL		ACTION ITEMS	STATUS
6 – Marine Resources	Increase awareness in residents and business owners with regard to the effects of pollutants , pesticides , and stormwater runoff and evaluate Town Code regarding the use of pesticides and herbicides with chemicals , in waterfront areas and town-wide . Providing information and incentives for greener practices will help to mitigate these environmental hazards. (6.3)	•	Prepare easy-to-read materials that summarize Kittery's water quality challenges and the effects of pollutants and pesticides. Distribute to property and business owners, and post on municipal website.	Lawn care training conducted. Town transition to environmentally sustainable pesticide treatment complete.
8 – Land Use	Consider an Adaptive Reuse Ordinance to guide redevelopment of existing buildings. By promoting the reuse of existing structures more efficient development can occur in areas already services by public utilities and protecting open land from development. (8.1)	•	Consider adopting a demolition delay ordinance. Consider adopting Adaptive Reuse Ordinance.	

ΤΟΡΙΟ			
AREA	GOAL	ACTION ITEMS	STATUS
9 - Coastal Community Resilience	GOAL Develop a Plan for Town facilities and property owners to transition to low and zero impact energy sources (9.2)	Establish a timeline for converting all Town-owned buildings to renewable energy.	STATUS Physical constraints of municipal sites make PV challenging. Multi-town community solar project approved. Sustainable and low impact development ordinances in development. LED Building light conversion project being proposed for CIP.

KITTERY TOWN COUNCIL Unapproved Minutes

December 13, 2021, Council Chambers

6:00PM

- 1 1. Call to Order
- 2 Chair Spiller called the meeting to order at 6 p.m.
- 3 2. Introductory
- 4 3. Pledge of Allegiance
- 5 4. Roll Call
- 6 Councilors present: Chair Judith Spiller, Vice Chair George Dow, Jeffrey Pelletier,
- 7 Cameron Hamm, Cyrus Clark, and Mary Gibbons Stevens. Councilor present remotely:
- 8 Colin McGuire
- 9 5. Agenda Amendment and Adoption
- 10 Chair Spiller amended the agenda by removing 16. EXECUTIVE SESSION item a.
- 11 (120221-20) The Kittery Town Council motions to go into Executive Session with the
- 12 Town Manager, pursuant to 1 MRS §405 (6) (D) to Discuss labor negotiations.
- 13 Chair Spiller cast one vote for the agenda as amended.
- 14 6. Town Manager's Report
- 15 The Town Manager reported on: COVID Update, Kittery Fire Department is hosting a
- 16 booster vaccination clinic on December 15, 2021 8AM to 12PM, New York Times
- 17 Report Woman on the Bridge, PFAS Identified in KRRF Test Wells, Town and Library
- 18 Websites, Fort Foster Signage, Safety Works Workplace Safety Inspections, Upcoming
- 19 Dates: Dog license renewals for 2022 are available at Town Hall and online
- 20 <u>www.kitteryme.gov</u>, Lunch & Learn with the Town Manager is on December 16, 2021
- 21 11:30AM, at the Kittery Community Center, Santa Ride-Around December 18, 2021,
- 22 2PM, for the map and details please visit <u>www.kitteryme.gov</u>, the Town Hall will be
- 23 closed for the Christmas Holiday on Thursday, December 23, 2021, and the Town Hall
- will be closed for the New Year's Day Holiday on Thursday, December 30, 2021.
- 25 7. Acceptance of Previous Minutes
- November 8, 2021 Regular Meeting
- November 22, 2021 Regular Meeting
- 28 Chair Spiller cast one vote to approve the minutes from November 8, and November 22,
- 29 2021 as presented.

- 30 8. Interviews for the Board of Appeals and Planning Board.
- a. (120221-1) The Kittery Town Council moves to interview and reappoint Leroy
- 32 (Dutch) Dunkelberger to the Planning Board for a three-year term to expire 12/31/2024.
- Chair Spiller asked Mr. Dunkelberger why he would like to be re-appointed to thePlanning Board.
- 35 Mr. Dunkelberger explained to the Council the reasons for wanting to be re-appointed to
- the Planning Board, he stated he enjoys the board, he also feels the board has made
- 37 great progress, and has provided a great service to the Town of Kittery.
- 38 Moved by Councilor Hamm, seconded by Councilor Clark.
- 39 Motion Carried 7-0-0
- b. (120221-2) The Kittery Town Council moves to interview and reappoint Karen
- 41 Kalmar to the Planning Board for a three-year term to expire 12/31/2024.
- 42 Chair Spiller asked Ms. Kalmar why she would like to be re-appointed to the Planning43 Board.
- 44 Ms. Kalmar explained to the Council the reasons for wanting to be re-appointed to the
- Planning Board, Ms. Kalmar stated she enjoys the work, finds it interesting, and sherespects all the members of the board.
- 47 Moved by Councilor Stevens, seconded by Councilor Hamm.
- 48 Motion Carried 7-0-0
- 49 9. All items involving the town attorney, town engineers, town employees or other town50 consultants or requested offices.
- a. (120221-3) The Kittery Town Council moves to receive the FY'21 Audit Report.
- 52 Patricia Moore, Finance Director gave an overview of the FY'21 Audit Report.
- 53 Christina Howe, of RHR Smith & Company Certified Public Accountants gave the
- 54 presentation on the FY'21 Audit Report and answered any questions the Council may
- 55 have had.
- 56 10. PUBLIC HEARINGS
- a. (120221-4) The Kittery Town Council moves to approve a multi-year agreement forsolid waste hauling.

- 59 The Town Manager gave an overview of the multi-year agreement for solid waste 60 hauling.
- 61 Vice Chair Dow moved in accordance with Title 30-A MRS §3001, and Town Charter
- 62 §§2.14 and 6.11(3), the Town of Kittery hereby ordains the approval for the Town
- 63 Manager to execute a five-year agreement for waste hauling services, seconded by
- 64 Councilor Stevens.
- 65 Motion Carried 7-0-0
- 66 b. (120221-5) The Kittery Town Council moves to approve a new Victualer's License
- 67 application from Chubbs Subs and Bakery located at 345 US Route 1, Kittery.
- 68 Moved by Vice Chair Dow, seconded by Councilor Hamm
- 69 Motion Carried 7-0-0
- 70 11. DISCUSSION
- a. Discussion by members of the public (three minutes per person).
- 52 b. Chairperson may read written comments into the record.
- 73 Jeff Thomson, 25 Old Post Road, Kittery, Maine spoke about being a member of the
- 74 Trustees of Trust Funds, and wrote about the history of Mary Safford Wildes and the
- 75 Mary Safford Wildes Trust Fund.
- c. Chairperson's response to public comments.
- 77 12. UNFINISHED BUSINESS
- 78 13. NEW BUSINESS
- 79 a. Donations/gifts received for Council disposition
- 80 (120221-6) The Kittery Town Council moves to accept a donation in the amount of
- 81 \$100.00 from Robert and Megan Kline, to be deposited into the KCC donations
- 82 account #2063.
- 83 Moved by Vice Chair Dow, seconded by Councilor Clark.
- 84 Motion Carried 7-0-0
- b. (120221-7) The Kittery Town Council moves to accept a grant award in the amount
- 86 of \$15,000 from the Stephen and Tabitha King Foundation, to be deposited into the
- 87 Fire Department Equipment reserve account #4056.
- 88 Fire Chief David O'Brien gave an overview of the grant award from the Stephen and
- 89 Tabitha King Foundation.

- 90 Moved by Councilor Hamm, seconded by Councilor Stevens.
- 91 Motion Carried 7-0-0
- 92 c. (120221-8) The Kittery Town Council moves to reappoint the following Board and
- 93 Committee members; all terms are for three years and will expire on 12/31/2024.
- 94 Joseph Afienko Board of Assessment Review
- 95 William Peirce Board of Assessment Review
- 96 Karen Saltus Conservation Commission
- 97 Earldean Wells Conservation Commission
- 98 Thomas Battcock-Emerson Economic Development Committee
- 99 Matthew Brock Kittery Housing Committee
- 100 Debbie Driscoll Kittery Housing Committee
- 101 Drew Fitch Kittery Housing Committee
- 102 Emily Flinkstrom Kittery Housing Committee
- 103 Daniel Clapp Shellfish Conservation
- 104 Todd Rollins Shellfish Conservation
- 105 Peter Thomas Shellfish Conservation
- 106 Jeff Thomson Trustees of Trust Funds
- 107 Moved by Vice Chair Dow, seconded by Council Hamm.
- 108 Motion Carried 7-0-0
- d. (120221-9) The Kittery Town Council moves to approve the surplus of tax acquired
- 110 properties for Rogers Road and Phelps Street via recommended methods.
- 111 The Town Manager gave an overview of the surplus of tax acquired properties for
- 112 Rogers Road and Phelps Street via recommended methods.
- 113 Moved by Vice Chair Dow, seconded by Councilor Hamm.
- 114 Motion Carried 7-0-0
- e. (120221-10) The Kittery Town Council moves to support the SAFER grant
- 116 application.
- 117 The Town Manager gave an overview of the SAFER grant application.
- 118 Town of Kittery's Fire Chief, David O'Brien, explained to the Council how important the
- 119 SAFER grant is and answered any questions the Council may have had.

- 120 Moved by Vice Chair Dow, seconded by Councilor Clark.
- 121 Motion Carried 7-0-0
- 122 f. (120221-11) The Kittery Town Council moves to appoint a Councilor along with the
- 123 Chair of the Climate Adaptation Committee to interview John McCollett for a three-year
- 124 term to expire 12/31/2024.
- 125 Chair Spiller moved to appoint Vice Chair Dow, seconded by Councilor Clark.
- 126 All were in favor.
- 127 g. (120221-12) The Kittery Town Council moves to appoint a Councilor along with the
- 128 Chair of the Economic Development Committee to interview Robert Kaszynski for a
- 129 three-year term to expire 12/31/2024.
- 130 Councilor Stevens moved to appoint Councilor Clark, seconded by Councilor Hamm.
- 131 All were in favor.
- h. (120221-13) The Kittery Town Council moves to appoint a Councilor along with the
- 133 Chair of the Conservation Commission to interview Lois Marshall for a three-year term
- 134 to expire 12/31/2024.
- 135 Vice Chair Dow moved to appoint Chair Spiller, seconded by Councilor Stevens.
- 136 All were in favor.
- i. (120221-14) The Kittery Town Council moves to approve a renewal Liquor License
- application from the Loyal Order of Moose #444, located at 76 US Route 1 Bypass
- 139 Kittery.
- 140 Moved by Vice Chair, seconded by Councilor Hamm.
- 141 Motion Carried 7-0-0
- 142 j. (120221-15) The Kittery Town Council moves to approve a Special Activity
- 143 Amusement permit application from the Loyal Order of Moose #444, located at 76 US
- 144 Route 1 Bypass Kittery.
- 145 Moved by Vice Chair Dow, seconded by Councilor Hamm.
- 146 Motion Carried 7-0-0
- 147 k. (120221-16) The Kittery Town Council moves to approve a renewal Liquor License
- 148 application from Weathervane Seafoods, located at 306 US Route 1, Kittery.
- 149 Moved by Councilor Stevens, seconded by Vice Chair Dow.
- 150 Motion Carried 7-0-0

- 151 I. (120221-17) The Kittery Town Council moves to approve a renewal Liquor License
- application from Roberts Maine Grill, located at 326 US Route 1, Kittery.
- 153 Moved by Vice Chair Dow, seconded by Chair Spiller.
- 154 Motion Carried 7-0-0
- m. (120221-18) The Kittery Town Council moves to schedule a public hearing on
- 156 January 24, 2022 to approve the Recodification of Title-16.
- 157 Moved by Vice Chair Dow, seconded by Councilor Hamm.
- 158 All were favor.
- 159 Chair Spiller scheduled a Workshop with the Planning Board January 3, 2022 at 6 p.m.
- n. (120221-19) The Kittery Town Council moves to approve the collective bargaining
- agreements for the following:
- 162 Police Officers
- 163 Police Supervisors
- 164 Public Safety Dispatch
- 165 Department of Public Works
- 166 Moved by Vice Chair Dow, seconded by Councilor Clark.
- 167 Motion Carried 7-0-0
- o. (120221-20) The Kittery Town Council moves to approve the following sponsoredspaces for the Rice Public Library.
- Children's Circulation Desk and Story Time Area, Given by the Family in honor of Edand Windy Burns.
- Second Floor Quiet Study/Travel Collection Room, Given by George III, George IV,
- 173 Gregory and Siobhan Dow, in memory of Jacqueline Ann Dow.
- 174 Moved by Chair Spiller, seconded by Councilor Pelletier.
- 175 Motion Carried 7-0-0
- 176 14. COUNCILOR ISSUES OR COMMENTS
- 177 Vice Chair Dow spoke about the Buoy Tree and the Stuff a Lobster Boat, as well as
- mentioned the great job the Kittery Port Authority's Chair Kelly Philbrook and memberSteve Lawrence did this year.
- 180 Vice Chair Dow spoke about the Seacoast Fridge, he stated it's another way for people
- 181 to give back.

- 182 Vice Chair Dow congratulated the Town Manager, Finance Director, and the Town staff183 for a great year.
- 184 15. COMMITTEE AND OTHER REPORTS
- a. Communications from the Chairperson
- 186 Chair Spiller reminded the Council about the Workshop with the Planning Board
- 187 January 3, 2022 at 6 p.m.
- 188 Chair Spiller also mentioned a Workshop on January 3, 2022 at 5 p.m. for Council189 Goals.
- Chair Spiller spoke about the certificates for the Maine Freedom of Information AccessAct.
- 192 Chair Spiller stated she along with several Councilors went on a library tour last week,
- 193 the group said the new library is beyond expectations.
- 194 Chair Spiller wished everyone Happy Holidays.
- 195 b. Committee Reports None
- 196 16. EXECUTIVE SESSION
- a. (120221-20) The Kittery Town Council motions to go into Executive Session with the
- 198 Town Manager, pursuant to 1 MRS §405 (6) (D) to Discuss labor negotiations.
- 199 17. ADJOURNMENT
- 200 Vice Chair Dow moved to adjourn at 7:35 p.m., seconded by Councilor Hamm.
- All were in favor.

Submitted by Kim Tackett

Disclaimer: The following minutes constitute the author's understanding of the meeting. Whilst every effort has been made to ensure the accuracy of the information, the minutes are not intended as a verbatim transcript of comments at the meeting, but a summary of the discussion and actions that took place. For complete details, please refer to the video of the meeting on the Town of Kittery website.

STATE OF MAINE **DEPARTMENT OF ENVIRONMENTAL PROTECTION**

December 14, 2021

Town of Kittery 200 Rogers Road Kittery, Maine 03904 Attn: Kendra Amaral - Town Manager

RE: PFAS Sampling Associated with Kittery's Closed Municipal Landfill

Dear Kendra;

I am writing as notification that sampling conducted recently by the Maine DEP at the Town of Kittery (Town) municipal landfill showed high enough levels of Per- and Polyfluoroalkyl Substances (PFAS) in the monitoring well groundwater that further sampling in the vicinity of the Town's closed municipal landfill for the presence of PFAS is warranted. The overall goal of this request is to determine whether PFAS is present in groundwater and, if so, whether it presents a risk to public health or the environment. Of primary concern is whether any drinking water wells are impacted at levels that exceed DEP's Interim Drinking Water Standard for PFAS (Resolve 2021, ch. 82, Resolve, To Protect Consumers of Public Drinking Water by establishing Maximum Contaminant Levels for Certain Substances and Contaminants, Emergency, effective June 21, 2021).

PFAS are an emerging contaminant of concern at closed municipal landfills and municipalities, as owner/operators, are ultimately responsible for contamination that is associated with their closed landfills. To that end, in 1998, the Maine Legislature created the Landfill Closure and Remediation Program (38 M.R.S. §§ 1310-C to 1310-H-1.). One of the Program's objectives is to remediate hazards posed by closed municipal solid waste landfills. The legislation provides a cost-sharing component that generally covers 90% of approved remediation that may be necessary to mitigate impacts resulting from contamination associated with such a landfill. As an example, if residential wells were impacted with elevated levels of PFAS associated with a closed landfill, the municipality can generally be reimbursed for 90% of the costs of the initial sampling and installation of such a residential filter system.

Regardless, the initial step in this process is to determine whether there are PFAS related impacts associated with the landfill in the groundwater drinking water supply wells in the area, which requires the collection of samples. The DEP is planning to collect the initial groundwater supply well samples at no cost to the Town. I hope the above answers some of the Town's questions, but I would be glad to provide additional information or to discuss further.

AUGUSTA 17 STATE HOUSE STATION AUGUSTA, MAINE 04333-0017 (207) 287-7688 FAX: (207) 287-7826 (207) 941-4570 FAX: (207) 941-4584

BANGOR 106 HOGAN ROAD, SUITE 6 BANGOR, MAINE 04401

PORTLAND 312 CANCO ROAD PORTLAND, MAINE 04103 (207) 822-6300 FAX: (207) 822-6303

PRESOUE ISLE 1235 CENTRAL DRIVE, SKYWAY PARK PRESQUE ISLE, MAINE 04769 (207) 764-0477 FAX: (207) 760-3143

I have attached the sample and analysis plan, and the analytical data from the landfill monitoring wells collected in late August, along with the planned sampling work to evaluate the drinking and process water supply wells in the vicinity of the landfill.

Additional information related to PFAS can be found on the Department's website (https://www1.maine.gov/dep/spills/topics/pfas/index.html)

Please feel free to reach out to me with any questions or if you need clarification regarding this issue.

Best Regards,

Matthew R. Young

Matthew R. Young Project Manager - Landfill Closure and Remediation Program Division of Remediation Maine Department of Environmental Protection Ph: (207) 215-7841/email: <u>matthew.r.young@maine.gov</u> <u>www.maine.gov/dep</u>

CC: Patricia Moore (Kittery), David Rich (Kittery), Jessa Kellogg (Kittery), and File (DEP)

Enc: SAP-Kittery Monitoring Well PFAS 2021, alpha analytical result reports from the October sampling work completed by the DEP.

PFAS

Residential Sampling and Analysis Plan

for the

Kittery Municipal Landfill Site Kittery, Maine

Prepared by:

Maine Department of Environmental Protection Landfill Closure and Remediation Program December 2021

Projected Dates of Sampling: Fall 2021 Organization: Maine DEP

1.0 Introduction

This SAP identifies the data collection activities and associated Quality Assurance/Quality Control (QA/QC) measures specific to the Kittery Municipal Landfill site located in Kittery, Maine, relative to the planned supplemental sampling for perfluorinated alkylated substances (PFASs). The purpose of this SAP is to describe site-specific tasks that will be performed in support of the stated objectives.

Closed in 1993 as required by the Maine DEP. It is a 5-acre landfill. Closed by the reduced procedure. The reduced procedure consisted of covering the waste with six inches of topsoil over eighteen inches of 10E-6 CM/S glacial till over six inches of borrow. This site accepted wastes from Portsmouth Naval Shipyard the wastes included solvents, paints, exc. There is a leachate to the north of the MSW covered landfill that has been sampled in the past, and there are five monitoring wells that were installed to monitor impacts from the Construction and Demolition Debris landfill to the southeast. There are no groundwater monitoring wells dedicated to the closed municipal landfill that are known to the Department. There is a leachate seep to the North of the landfill that has been identified in past site inspections,

There are residiential drinking water supply wells in the area of the landfill to the North and to the South East.

3.0 Contaminants of Concern

Potential contaminants of concern (COCs) at the site for this sampling event, relative to Perfluorinated Alkylated Substances (PFASs) (Specific PFAS molecules of concern are PFOA, PFOS, PFHxS, PFHpA, PFNA, and PFDA).

4.0 Project Description and Schedule

One set of samples each will be collected from the identified residential drinking water supply wells in close proximity to the Kittery landfill system. The samples will be analyzed for PFAS and landfill parameters. The sample locations can be seen on Figure 1&2. The sample team will mobilize to the site and will collect samples from the designated sample locations. Sampling will take approximately one full working day with travel included.

5.0 Project Data Quality Objectives

Analysis Laboratory will be Alpha Laboratories: Project Manager – Michael Chang Ph: 508-4395124 mchang@alphalab.com

Analysis method will be the Modified EPA method 537 (holding time 14 days at $<6^{\circ}$ C) There are six drinking water samples targeted to be sampled for this project. There will be one field reagent blank sample taken for this project.

5.1 Project Objectives

The following project objectives apply to this site investigation:

To assess the potential of whether PFOA/PFOS are contaminants in the ground water via sampling groundwater in the area.

5.2 Measurement and Performance Criteria

Standard data quality measurement and performance criteria will be used to ensure that data are sufficiently sensitive, precise, accurate, and representative to support site decisions.

6.0 Sampling Design

Once a sampling schedule is established, sampling personnel will mobilize to the site to collect a sample from each of the selected monitoring wells adjacent to the Landfill and the porewater location if it can be located. Table 1 presents the wells to be sampled; a map showing the targeted wells and landfill can be found on Figure 1. The monitoring wells will be sampled in accordance with standard operating procedure (SOP) MEDEP SOP RWM-DR-001: Drinking Water Sampling. Samplers will follow the protocols for prohibited and acceptable items found in Table 3. All water samples will be collected using dedicated sampling equipment. Prior to sampling each location, the sample handler must rinse their hands and don nitrile gloves. PFAS contamination during sample collection can occur from many common sources, including food packaging and certain foods and beverages. Proper hand rinsing and wearing nitrile gloves will help to minimize this type of accidental contamination of the samples. Samples collected for PFAS analysis do not have to be headspace free.

7.0 Sample Handling, Tracking, and Custody Procedures

All samples will be identified, handled, shipped, tracked, and maintained under chain of custody in accordance with SOP MEDEP SOP-RWM-DR-012: Chain of Custody Protocol.

8.0 Fixed Laboratory Analytical Methods and Procedures.

8.1 Fixed Laboratory Analytical Parameters

Water samples collected will be analyzed for the following analytical parameters:

- Perfluorinated Alkylated Substances Perfluorinated Alkylated Substances (PFASs) (Specific PFAS molecules of concern are PFOA, PFOS, PFHxS, PFHpA, PFNA, and PFDA to total 26 perfluorinated compounds) see attachment 1 for more information on the specific compounds to be analyzed.

8.2 Fixed Laboratory Methods and Standard Operating Procedures

The following procedures and methods will be used:

- Modified EPA Method 537

8.3 Fixed Laboratory

The contracted analytical laboratory must be Maine certified to perform the aforementioned methods. The contract lab will be able to accommodate the sample load and perform the analyses within holding times. The contract lab must be able to achieve PQLs, for all analyses, which are below the associated regulatory guideline value.

9.0 Quality Control Activities

9.1 Field Quality Control

A field reagent blank will be made in the field, and the temperature blank will be used that is to be kept in the cooler always.

9.2 Analytical Quality Control

There will be a Method Blank, a Laboratory Control Spike, and isotope dilutions run at the laboratory.

9.3 Performance Evaluation Samples

No performance evaluation (PE) samples (Duplicates) are to be collected during the sampling event.

10.0 Documentation, Records and Data Management

Documentation, record keeping, and data management activities will be conducted in accordance with MEDEP SOP DR013: Documentation of Field Activities and Development of a Trip Report.

Table 1 - Sampling Locations and Sampling and Analysis Summary,Kittery Municipal Landfill

Sampling Location	Matrix	Analytical Parameter	Number of Samples (Identify field duplicates and replicates)	Sample Location Type	Rationale
8 Jewett Ln	Groundwater	PFAS	5	Drinking Water	To assess for PFAS
14 Jewett Ln		Short		Supply Wells	contamination at
10 Jewett Ln		Landfill list			nearby residences.
67 Wilson Rd					
FRB-1	Aqueous	PFAS	1	Environmental Blank	Quality Control.
Trip Blank	Aqueous	VOC	1	Environmental Blank	Quality Control.

Table 2 - Contaminants of Concern(Reference Limit and Evaluation Table)

Matrix: Water

Contaminant of Concern	Project Action Level	Analytical Method	Achievable Laboratory Limits
	(Units) (wet or dry weight)	Published Method MDLs ¹	Laboratory MDLs ²
	or Removal Action Limits (RALs)		
PFAS - PFOA, PFOS, PFHxS, PFHpA, PFNA, and PFDA	20 ng/L ³	0.44 ng/L	1.0 ng/L

¹Analytical method MDLs documented in validated methods.

²Achievable MDLs supplied by Axys Analytical Services for MLA-060 PFAA analysis. The contract lab must be able to achieve PQLs, for all analyses, that are less than the associated regulatory guideline value.

³ 70 ng/l is the limit of the PFOA and PFOS combined.

Table 3: Summary of Prohibited and Acceptable Items for Use in PFAS Sampling

Prohibited Items	Acceptable Items	
Field Eq	uipment	
Teflon® containing materials. Aluminum foil.	High-density polyethylene (HDPE) and stainless steel materials	
Storage of samples in containers made of LDPE materials	Acetate direct push liners	
Teflon® tubing	Silicon or HDPE tubing	
Waterproof field books. Water resistant sample bottle labels.	Loose paper (non-waterproof). Paper sample labels covered with clear packing tape, or lab-applied labels.	

Plastic clipboards, binders, or spiral hard cover	Aluminum or Masonite field clipboards						
NOTEDOOKS	Charniag@ name						
	Snarpies®, pens						
Post-It Notes							
Chemical (blue) ice packs	Regularice						
Excel Purity Paste	Gasoils NT Non-PTFE Thread Sealant						
TFW Multipurpose Thread Sealant	Bentonite						
Vibra-Lite Thread Sealant							
Equipment with Viton Components (need to							
be evaluated on a case by case basis,							
Viton contains PIFE, but may be							
acceptable if used in gaskets or O - rings							
that are sealed away and will not come into							
contact with sample or sampling							
equipment.)							
Field Clothi	ng and PPF						
Now clothing or water resistant waterproof							
	Well-laundered clothing defined as clothing						
or stain treated clothing, clothing laundered	Well-laundered clothing, defined as clothing that has been washed 6 or more times after						
or stain treated clothing, clothing laundered with fabric softeners, clothing containing	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers						
or stain treated clothing, clothing laundered with fabric softeners, clothing containing	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one						
or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized						
or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing.						
or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing.						
or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing. No fabric softener						
or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™] Clothing laundered using fabric softener Boots containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing. No fabric softener Boots made with polyurethane and PVC for wat conditions, or rubber everbages ("abidicen						
or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™] Clothing laundered using fabric softener Boots containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing. No fabric softener Boots made with polyurethane and PVC for wet conditions, or rubber overboots ("chicken boots")						
or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™] Clothing laundered using fabric softener Boots containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing. No fabric softener Boots made with polyurethane and PVC for wet conditions, or rubber overboots ("chicken boots")						
New clothing of water resistant, waterproof, or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™] Clothing laundered using fabric softener Boots containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing. No fabric softener Boots made with polyurethane and PVC for wet conditions, or rubber overboots ("chicken boots") Reflective safety vests, Tyvek®, Cotton						
New clothing of water resistant, waterproof, or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™] Clothing laundered using fabric softener Boots containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing. No fabric softener Boots made with polyurethane and PVC for wet conditions, or rubber overboots ("chicken boots") Reflective safety vests, Tyvek®, Cotton clothing, synthetic under clothing,						
New clothing of water resistant, waterproof, or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™] Clothing laundered using fabric softener Boots containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing. No fabric softener Boots made with polyurethane and PVC for wet conditions, or rubber overboots ("chicken boots") Reflective safety vests, Tyvek®, Cotton clothing, synthetic under clothing, medical braces						
New clothing of water resistant, waterproof, or stain treated clothing, clothing laundered with fabric softeners, clothing containing Gore-Tex [™] Clothing laundered using fabric softener Boots containing Gore-Tex [™]	Well-laundered clothing, defined as clothing that has been washed 6 or more times after purchase, made of synthetic or natural fibers (preferable cotton). Cotton coveralls are one option that reduces the need for specialized personal clothing. No fabric softener Boots made with polyurethane and PVC for wet conditions, or rubber overboots ("chicken boots") Reflective safety vests, Tyvek®, Cotton clothing, synthetic under clothing, medical braces						
No cosmetics, moisturizers, hand cream, or other related products as part of personal cleaning/showering routine on the morning of sampling	Sunscreens - sunscreens that are "free" or "natural", or UV blocking clothing Insect Repellents - Sawyer permethrin clothing treatment, Deep Woods Off, Insect Shield pre-treated clothing ⁽¹⁾						
--	---	--	--	--	--	--	--
Sample C	ontainers						
LDPE, glass containers or passive diffusion bags.	HDPE (any media) or polypropylene (only for EPA Method 537.1 samples)						
Teflon®-lined caps	Lined or unlined HDPE or polypropylene caps						
Rain E	Events						
Gore-Tex [™] or similar breathable coated waterproof or resistant rain gear	Polyurethane, vinyl, wax or rubber-coated rain gear. Gazebo tent that is only touched or moved prior to and following sampling activities						
Equipment De	contamination						
Decon 90	Alconox® and/or Liquinox®						
Water from an on-site well	Potable water from municipal drinking water supply (if tested as PFAS-free); Lab- supplied PFAS-free water						
Food Considerations							
All food and drink, with exceptions noted on the right	Bottled water and hydration drinks (i.e. Gatorade® and Powerade®) to be brought and consumed only in the staging area						

(1) Bartlett SA, Davis KL. Evaluating PFAS cross contamination issues. *Remediation*. 2018;28:53–57.

It is recommended that all water samples will be collected using dedicated or disposable sampling equipment where possible. Any re-usable equipment, such as plumbing fittings, that may be needed in certain cases to obtain a sample from the pressure tank tap, should be deconned using Alconox/Liquinox soap and rinsed with PFAS-free water prior to use and between locations.

Figure 1.

Δίρηα
World Class Chemistry

ANALYTICAL	CHAIN OF CU	STODY	PAC	GE	1	_ OF	1	_	Date R	ec'd in	Lab:							ALPHA Job REM01	#:
8 Walkup Drive Westboro, MA 01581 508)-898-9220	320 Forbes Blvd Mansfield, MA 02048 Tel: Tel: (508)-822-9300	Project Information Re Site Name: Kittery Municipal Landfill I					Report Information - Data Deliverables EMAIL O ADEx								Billing Information				
Client Information Site Location: MacKenzie Rd Kittery, ME															ITTIO				
Client:Maine DEP		EGAD Num	oer - 27816																
Contact Name:Matthew	v Young	Project Man	ager: Matthe	w Young															
City: Augusta		Copies to:																	
State:Maine	Zip Code:04333-0017	ALPHA Quo	te #:REM01																
Phone: 207-215-7841		Turn-Aroun X Standard	d Time □ Rush (only confirm	ned if pre-appr	oved)													
Email:matthew.r.young	@maine.gov	Date Due:	·			,								ANAI	LYSIS				
Additional Project Infor	mation:Residential water sampes. F	REM00186							III (Mod 537-isotpe)	75)								SAMPLE IN Filtration Field Lab to d	FO 0 0 0
ALPHA Lab ID (Lab Use Only)	Sample Point Name	Sample Date	Collection Time	Sample Matrix/ Type	Sample Location	Sample Collection Method	Treatment Status	PID Result	FAS - ALPHA Fu	ETHANE (RSK-1	nort Landfill Lis							Lab to d Sample	<pre> TOTAL # </pre>
	8 Jewett Lane			GW		GS	Ν		х	≥ X	x							Comments	
	14 Jewett Lane			GW		GS	Ν		X	X	X								
	67 Wilson Rd			GW		GS	Ν		X	X	X								
	12 Jewett Lane			GW		GS	Ν		Х	X	X								
	10 Jewett Lane			GW		GS	NA		X	X	X								
	Field Reagent Blank			AQ		GS	NA		X										
Container Type P=Plastic A=Amber Glass V=Vial G=Glass	Relinguished	Container Type: Preservative:						P A Receiv	G B ed By:	A B					Date/1	Time:	All samples submitted ar to Alpha's Te Conditions.	e subject erms and	
B=Bacteria cup C=Cube O=Other E=Encore BOD=Bottle	F=MeOH G=NaHSO4 H=NA2S2O3 I-Ascorbic Acid J=NH4CL K=Zn Acetone									J -								See reverse	side.

	CHAIN OF CUS	STODY	PAC	GE	1	_ OF	1	_	Date R	ec'd in	Lab:							ALPHA Job REM01	#:
8 Walkup Drive Westboro, MA 01581 508)-898-9220	320 Forbes Blvd Mansfield, MA 02048 Tel: Tel: (508)-822-9300	Project Information Site Name: Kittery Municipal Landfill					Report Information - Data Deliverables EMAIL							Billing Information					
Client Information		Site Location	n: MacKenzi	e Rd Kitter	y, ME														
Client:Maine DEP		EGAD Number - 27816																	
Contact Name:Matthew	v Young	Project Mana	ager: Matthe	ew Young															
City: Augusta		Copies to:																	
State:Maine	Zip Code:04333-0017	ALPHA Quo	te #:REM01																
Phone: 207-215-7841		Turn-Aroun X Standard	d Time □ Rush (only confirm	ned if pre-appr	oved)													
Email:matthew.r.young	@maine.gov	Date Due:				·								ANAI	YSIS				
Additional Project Infor	mation:Residential water sampes. R	EM00186							ll (Mod 537-isotpe)	75)								SAMPLE IN Filtration Field Lab to d	FO DOTTLES
ALPHA Lab ID (Lab Use Only)	Sample Point Name	Sample Date	Collection Time	Sample Matrix/ Type	Sample Location	Sample Collection Method	Treatment Status	PID Result	PFAS - ALPHA Fu	METHANE (RSK-1	short Landfill List							Lab to d Sample Comments	
	8 Jewett Lane			GW		GS	N		X	X	X								
	14 Jewett Lane			GW		GS	Ν		X	X	х								
	67 Wilson Rd			GW		GS	Ν		Х	X	Х								
	12 Jewett Lane			GW		GS	N		Х	X	X								
	10 Jewett Lane			GW		GS	NA		Х	X	Х								
	Field Reagent Blank			AQ		GS	NA		Х										
Container TypePreservativeA=NoneO=OtherP=PlasticB=HCLA=Amber GlassC=HNO3V=VialD=H2SO4G=GlassE=NAOHB=Bacteria cupF=MeOHC=CubaC=NaUSO4		Container Type: Preservative: Relinquished By: Date/Time:					P G A A B B Received By: Image: Control of the second secon				Date/T	Γime:	All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.						
O=Other E=Encore BOD=Bottle																			

Sample Location						
AFTER FILTERS	AF					
AFTER SOFTENER	AS					
BASEMENT	BM					
BEFORE FILTERS	BE					
BENEATH DISPENSER	BD					
BENEATH PIPING	BP					
FIRST FLOOR	FF					
FLOOR	F					
GARAGE	GR					
INSIDE TAP	Т					
NOT APPLICABLE	NA					
OTHER	0					
SIDE WALL ABOVE 2 FEET	SA					
SIDE WALL BELOW 2 FEET	SB					
SUBSLAB	SS					
THIRD FLOOR	TF					
TREATMENT SYSTEM-EFFLUENT	EF					
TREATMENT SYSTEM-INFLUENT	IN					
TREATMENT SYSTEM-MIDPOINT	МР					
UNKNOWN	U					
WELLHEAD	PU					
BETWEEN FILTERS	ВТ					
CRAWLSPACE	CW					
OUTDOOR	OD					
OUTSIDE TAP	от					
PRESSURE TANK	РТ					
SECOND FLOOR	SF					

TREATMENT STATUS							
NOT APPLICABLE	NA						
NOT TREATED	Ν						
TREATED	т						
UNKNOWN	U						

Sample Collection Method						
BAILED SAMPLE	BS					
COMPOSITE SAMPLE	CS					
DIRECT PUSH SAMPLE	DP					
GRAB SAMPLE	GS					
GRAB SAMPLE- FIRST DRAW	GSFD					
HAND AUGER	НА					
INCREMENTAL SOIL SAMPLE	ISS					
LOW FLOW SAMPLE	LFS					
NO-PURGE SAMPLE	NP					
NOT APPLICABLE	NA					
OTHER	0					
PACKER SAMPLE	PS					
PERISTALTIC PUMP	PER					
PLUMBING SYSTEM	PST					
PORE WATER SAMPLER	PWS					
SUMMA CANNISTER	SUM					
TEDLAR BAG	TED					
UNKNOWN	UNK					

Sample Type/Matrix							
AIR	A						
AQUEOUS (FOR QC DATA ONLY)	AQ						
GROUNDWATER	GW						
NDOOR AIR	IA						
NEAT SAMPLE	Ν						
OUTDOOR AIR	ΟΑ						
PORE WATER	РО						
SEDIMENT	SD						
SOIL	SL						
SOIL GAS	GS						
SUBSLAB GAS	SSG						
SURFACE WATER	sw						
JNKNOWN	U						

Matrix	Test Method	Sam
GW	EPH	Two 1-L amber, g
GW	TEPH	Two 1-L amber, g
GW	VPH	Three 40-mL glass vials
GW	Std 8260	Three 40-ml VOA via w/HCL - fill
GW	524.2	Two 40-ml VOA vials w chlo
GW	Potability Test	Subcontracted to A
GW	Radon	subcontracted to A8
SL	EPH	One 250
SL	TEPH	One 250
SL	VPH	Two 40-ml VOA via

* All samples to be packed on ice.

revised 11.15.17

als - one unpreserved, one with methanol

ANALYTICAL REPORT

Lab Number:	L2155960
Client:	Maine DEP-Div. of Technical Services 17 State House Station Augusta, ME 04333
ATTN:	Matt Young
Phone:	(207) 557-5762
Project Name:	KITTERY MUNICIPAL LANDFILL
Project Number:	27816
Report Date:	10/27/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:27816

Lab Number:	L2155960
Report Date:	10/27/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2155960-01	B110	WATER	MACKENZIE RD., KITTERY, ME	10/13/21 11:25	10/13/21
L2155960-02	B-109	WATER	MACKENZIE RD., KITTERY, ME	10/13/21 11:55	10/13/21
L2155960-03	KITTERY PW-1	WATER	MACKENZIE RD., KITTERY, ME	10/13/21 10:05	10/13/21
L2155960-04	FIELD REAGENT BLANK	WATER	MACKENZIE RD., KITTERY, ME	10/13/21 12:00	10/13/21

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:27816

 Lab Number:
 L2155960

 Report Date:
 10/27/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:27816

 Lab Number:
 L2155960

 Report Date:
 10/27/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2155960-02: The sample identified as "B-109" on the chain of custody was identified as "B102" on the container label. At the client's request, the sample is reported as "B-109". L2155960-03: The sample identified as "KITTERY PW-1" on the chain of custody was identified as

"Porewater" on the container label. At the client's request, the sample is reported as "KITTERY PW-1".

Volatile Organics

The WG1562638-3/-4 LCS/LCSD RPD, associated with L2155960-01 through -03, is above the acceptance criteria for chloroethane (24%).

Perfluorinated Alkyl Acids by Isotope Dilution

L2155960-01, -02, and -03: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

L2155960-04: The Field Blank has a result for 6:2FTS present above the reporting limit. The sample was verified as being labeled correctly by the laboratory and the previous analysis showed there was no potential for carry over. There is no remaining volume for re-extraction confirmation.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 10/27/21

ORGANICS

VOLATILES

		Serial_No:10272119:21			
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960		
Project Number:	27816	Report Date:	10/27/21		
	SAMPLE RESULTS				
Lab ID:	L2155960-01	Date Collected:	10/13/21 11:25		
Client ID:	B110	Date Received:	10/13/21		
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified		
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	10/24/21 11:13				
Analyst:	NLK				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Mathylana chlarida	ND		.ug/l	3.0	0.68	1	
	ND		ug/i	0.75	0.00	1	
	ND		ug/i	0.75	0.21	1	
	ND		ug/i	0.75	0.22	1	
	ND		ug/I	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	0.50	0.18	1	
Trichlorofluoromethane	ND		ug/l	1.0	0.16	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
1,1-Dichloropropene	ND		ug/l	1.0	0.24	1	
Bromoform	ND		ug/l	1.0	0.25	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	0.75	0.20	1	
Ethylbenzene	ND		ug/l	0.50	0.17	1	
Chloromethane	ND		ug/l	2.0	0.20	1	
Bromomethane	ND		ug/l	1.0	0.26	1	
Vinyl chloride	ND		ug/l	0.20	0.07	1	
Chloroethane	ND		ug/l	1.0	0.13	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.16	1	
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ua/l	1.0	0.18	1	
,			~g,.	-			

		Serial_No:10272119:21		
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960	
Project Number:	27816	Report Date:	10/27/21	
	SAMPLE RESULTS			
Lab ID:	L2155960-01	Date Collected:	10/13/21 11:25	
Client ID:	B110	Date Received:	10/13/21	
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
1,3-Dichlorobenzene	ND		ug/l	1.0	0.19	1	
1,4-Dichlorobenzene	ND		ug/l	1.0	0.19	1	
Methyl tert butyl ether	ND		ug/l	1.0	0.17	1	
p/m-Xylene	ND		ug/l	1.0	0.33	1	
o-Xylene	ND		ug/l	1.0	0.39	1	
Xylenes, Total	ND		ug/l	1.0	0.33	1	
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	1	
Dibromomethane	ND		ug/l	1.0	0.36	1	
1,2,3-Trichloropropane	ND		ug/l	1.0	0.18	1	
Styrene	ND		ug/l	1.0	0.36	1	
Dichlorodifluoromethane	ND		ug/l	2.0	0.24	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	1.0	0.30	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1	
2-Hexanone	ND		ug/l	5.0	0.52	1	
Bromochloromethane	ND		ug/l	1.0	0.15	1	
Tetrahydrofuran	ND		ug/l	2.0	0.52	1	
2,2-Dichloropropane	ND		ug/l	1.0	0.20	1	
1,2-Dibromoethane	ND		ug/l	1.0	0.19	1	
1,3-Dichloropropane	ND		ug/l	1.0	0.21	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1	
Bromobenzene	ND		ug/l	1.0	0.15	1	
n-Butylbenzene	ND		ug/l	0.50	0.19	1	
sec-Butylbenzene	ND		ug/l	0.50	0.18	1	
tert-Butylbenzene	ND		ug/l	1.0	0.20	1	
o-Chlorotoluene	ND		ug/l	1.0	0.22	1	
p-Chlorotoluene	ND		ug/l	1.0	0.18	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	1.0	0.35	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.22	1	
Isopropylbenzene	ND		ug/l	0.50	0.19	1	
p-Isopropyltoluene	ND		ug/l	0.50	0.19	1	
Naphthalene	ND		ug/l	1.0	0.22	1	
n-Propylbenzene	ND		ug/l	0.50	0.17	1	
1,2,3-Trichlorobenzene	ND		ug/l	1.0	0.23	1	
1,2,4-Trichlorobenzene	ND		ug/l	1.0	0.22	1	
1,3,5-Trimethylbenzene	ND		ug/l	1.0	0.22	1	

		Serial_No:10272119:21		
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960	
Project Number:	27816	Report Date:	10/27/21	
	SAMPLE RESULTS			
Lab ID:	L2155960-01	Date Collected:	10/13/21 11:25	
Client ID:	B110	Date Received:	10/13/21	
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3,5-Trichlorobenzene	ND		ug/l	1.0	0.14	1			
1,2,4-Trimethylbenzene	ND		ug/l	1.0	0.19	1			
Ethyl ether	ND		ug/l	1.0	0.16	1			
Diisopropyl Ether	ND		ug/l	1.0	0.42	1			
Tert-Butyl Alcohol	ND		ug/l	10	1.4	1			
Ethyl-Tert-Butyl-Ether	ND		ug/l	1.0	0.18	1			
Tertiary-Amyl Methyl Ether	ND		ug/l	1.0	0.28	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	105	70-130	

		Serial_No:10272119:21			
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960		
Project Number:	27816	Report Date:	10/27/21		
	SAMPLE RESULTS				
Lab ID:	L2155960-02	Date Collected:	10/13/21 11:55		
Client ID:	B-109	Date Received:	10/13/21		
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified		
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	10/24/21 11:33				
Analyst:	NLK				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	3.0	0.68	1		
1,1-Dichloroethane	ND		ug/l	0.75	0.21	1		
Chloroform	ND		ug/l	0.75	0.22	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	0.50	0.18	1		
Trichlorofluoromethane	ND		ug/l	1.0	0.16	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
1,1-Dichloropropene	ND		ug/l	1.0	0.24	1		
Bromoform	ND		ug/l	1.0	0.25	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	0.75	0.20	1		
Ethylbenzene	ND		ug/l	0.50	0.17	1		
Chloromethane	ND		ug/l	2.0	0.20	1		
Bromomethane	ND		ug/l	1.0	0.26	1		
Vinyl chloride	ND		ug/l	0.20	0.07	1		
Chloroethane	ND		ug/l	1.0	0.13	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.16	1		
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	1.0	0.18	1		

		Serial_No:10272119:21		
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960	
Project Number:	27816	Report Date:	10/27/21	
	SAMPLE RESULTS			
Lab ID:	L2155960-02	Date Collected:	10/13/21 11:55	
Client ID:	B-109	Date Received:	10/13/21	
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,3-Dichlorobenzene	ND		ug/l	1.0	0.19	1		
1,4-Dichlorobenzene	ND		ug/l	1.0	0.19	1		
Methyl tert butyl ether	ND		ug/l	1.0	0.17	1		
p/m-Xylene	ND		ug/l	1.0	0.33	1		
o-Xylene	ND		ug/l	1.0	0.39	1		
Xylenes, Total	ND		ug/l	1.0	0.33	1		
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	1		
Dibromomethane	ND		ug/l	1.0	0.36	1		
1,2,3-Trichloropropane	ND		ug/l	1.0	0.18	1		
Styrene	ND		ug/l	1.0	0.36	1		
Dichlorodifluoromethane	ND		ug/l	2.0	0.24	1		
Acetone	2.7	J	ug/l	5.0	1.5	1		
Carbon disulfide	ND		ug/l	1.0	0.30	1		
2-Butanone	ND		ug/l	5.0	1.9	1		
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1		
2-Hexanone	ND		ug/l	5.0	0.52	1		
Bromochloromethane	ND		ug/l	1.0	0.15	1		
Tetrahydrofuran	ND		ug/l	2.0	0.52	1		
2,2-Dichloropropane	ND		ug/l	1.0	0.20	1		
1,2-Dibromoethane	ND		ug/l	1.0	0.19	1		
1,3-Dichloropropane	ND		ug/l	1.0	0.21	1		
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1		
Bromobenzene	ND		ug/l	1.0	0.15	1		
n-Butylbenzene	ND		ug/l	0.50	0.19	1		
sec-Butylbenzene	ND		ug/l	0.50	0.18	1		
tert-Butylbenzene	ND		ug/l	1.0	0.20	1		
o-Chlorotoluene	ND		ug/l	1.0	0.22	1		
p-Chlorotoluene	ND		ug/l	1.0	0.18	1		
1,2-Dibromo-3-chloropropane	ND		ug/l	1.0	0.35	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.22	1		
Isopropylbenzene	ND		ug/l	0.50	0.19	1		
p-Isopropyltoluene	ND		ug/l	0.50	0.19	1		
Naphthalene	ND		ug/l	1.0	0.22	1		
n-Propylbenzene	ND		ug/l	0.50	0.17	1		
1,2,3-Trichlorobenzene	ND		ug/l	1.0	0.23	1		
1,2,4-Trichlorobenzene	ND		ug/l	1.0	0.22	1		
1,3,5-Trimethylbenzene	ND		ug/l	1.0	0.22	1		

		Serial_No:10272119:21		
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960	
Project Number:	27816	Report Date:	10/27/21	
	SAMPLE RESULTS			
Lab ID:	L2155960-02	Date Collected:	10/13/21 11:55	
Client ID:	B-109	Date Received:	10/13/21	
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3,5-Trichlorobenzene	ND		ug/l	1.0	0.14	1			
1,2,4-Trimethylbenzene	ND		ug/l	1.0	0.19	1			
Ethyl ether	ND		ug/l	1.0	0.16	1			
Diisopropyl Ether	ND		ug/l	1.0	0.42	1			
Tert-Butyl Alcohol	ND		ug/l	10	1.4	1			
Ethyl-Tert-Butyl-Ether	ND		ug/l	1.0	0.18	1			
Tertiary-Amyl Methyl Ether	ND		ug/l	1.0	0.28	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	111	70-130	

		Serial_No	b:10272119:21
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960
Project Number:	27816	Report Date:	10/27/21
	SAMPLE RESULTS		
Lab ID:	L2155960-03	Date Collected:	10/13/21 10:05
Client ID:	KITTERY PW-1	Date Received:	10/13/21
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/24/21 11:54		
Analyst:	NLK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	3.0	0.68	1	
1,1-Dichloroethane	ND		ug/l	0.75	0.21	1	
Chloroform	ND		ug/l	0.75	0.22	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	0.50	0.18	1	
Trichlorofluoromethane	ND		ug/l	1.0	0.16	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
1,1-Dichloropropene	ND		ug/l	1.0	0.24	1	
Bromoform	ND		ug/l	1.0	0.25	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	0.75	0.20	1	
Ethylbenzene	ND		ug/l	0.50	0.17	1	
Chloromethane	ND		ug/l	2.0	0.20	1	
Bromomethane	ND		ug/l	1.0	0.26	1	
Vinyl chloride	ND		ug/l	0.20	0.07	1	
Chloroethane	ND		ug/l	1.0	0.13	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.16	1	
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	1.0	0.18	1	

Project Name: Lab Number: KITTERY MUNICIPAL LANDFILL L2155960 **Project Number:** Report Date: 27816 10/27/21 SAMPLE RESULTS Lab ID: L2155960-03 Date Collected: 10/13/21 10:05 Client ID: **KITTERY PW-1** Date Received: 10/13/21 Sample Location: Field Prep: MACKENZIE RD., KITTERY, ME Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	1.0	0.19	1	
1,4-Dichlorobenzene	ND		ug/l	1.0	0.19	1	
Methyl tert butyl ether	ND		ug/l	1.0	0.17	1	
p/m-Xylene	ND		ug/l	1.0	0.33	1	
o-Xylene	ND		ug/l	1.0	0.39	1	
Xylenes, Total	ND		ug/l	1.0	0.33	1	
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	1	
Dibromomethane	ND		ug/l	1.0	0.36	1	
1,2,3-Trichloropropane	ND		ug/l	1.0	0.18	1	
Styrene	ND		ug/l	1.0	0.36	1	
Dichlorodifluoromethane	ND		ug/l	2.0	0.24	1	
Acetone	1.7	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	1.0	0.30	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1	
2-Hexanone	ND		ug/l	5.0	0.52	1	
Bromochloromethane	ND		ug/l	1.0	0.15	1	
Tetrahydrofuran	0.53	J	ug/l	2.0	0.52	1	
2,2-Dichloropropane	ND		ug/l	1.0	0.20	1	
1,2-Dibromoethane	ND		ug/l	1.0	0.19	1	
1,3-Dichloropropane	ND		ug/l	1.0	0.21	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1	
Bromobenzene	ND		ug/l	1.0	0.15	1	
n-Butylbenzene	ND		ug/l	0.50	0.19	1	
sec-Butylbenzene	ND		ug/l	0.50	0.18	1	
tert-Butylbenzene	ND		ug/l	1.0	0.20	1	
o-Chlorotoluene	ND		ug/l	1.0	0.22	1	
p-Chlorotoluene	ND		ug/l	1.0	0.18	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	1.0	0.35	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.22	1	
Isopropylbenzene	ND		ug/l	0.50	0.19	1	
p-Isopropyltoluene	ND		ug/l	0.50	0.19	1	
Naphthalene	ND		ug/l	1.0	0.22	1	
n-Propylbenzene	ND		ug/l	0.50	0.17	1	
1,2,3-Trichlorobenzene	ND		ug/l	1.0	0.23	1	
1,2,4-Trichlorobenzene	ND		ug/l	1.0	0.22	1	
1.3.5-Trimethylbenzene	ND		ua/l	1.0	0.22	1	

Serial_No:10272119:21

		Serial_No:10272119:21				
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960			
Project Number:	27816	Report Date:	10/27/21			
SAMPLE RESULTS						
Lab ID:	L2155960-03	Date Collected:	10/13/21 10:05			
Client ID:	KITTERY PW-1	Date Received:	10/13/21			
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3,5-Trichlorobenzene	ND		ug/l	1.0	0.14	1			
1,2,4-Trimethylbenzene	ND		ug/l	1.0	0.19	1			
Ethyl ether	0.20	J	ug/l	1.0	0.16	1			
Diisopropyl Ether	ND		ug/l	1.0	0.42	1			
Tert-Butyl Alcohol	ND		ug/l	10	1.4	1			
Ethyl-Tert-Butyl-Ether	ND		ug/l	1.0	0.18	1			
Tertiary-Amyl Methyl Ether	ND		ug/l	1.0	0.28	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	105	70-130	

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 27816

Lab Number: L2155960 **Report Date:** 10/27/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/24/21 09:11 Analyst: PD

Parameter	Result	Qualifier	Units	5	RL	MDL
Volatile Organics by GC/MS - We	stborough Lab	o for sample	e(s):	01-03	Batch:	WG1562638-5
Methylene chloride	ND		ug/l		3.0	0.68
1,1-Dichloroethane	ND		ug/l		0.75	0.21
Chloroform	ND		ug/l		0.75	0.22
Carbon tetrachloride	ND		ug/l		0.50	0.13
1,2-Dichloropropane	ND		ug/l		1.0	0.14
Dibromochloromethane	ND		ug/l		0.50	0.15
1,1,2-Trichloroethane	ND		ug/l		0.75	0.14
Tetrachloroethene	ND		ug/l		0.50	0.18
Chlorobenzene	ND		ug/l		0.50	0.18
Trichlorofluoromethane	ND		ug/l		1.0	0.16
1,2-Dichloroethane	ND		ug/l		0.50	0.13
1,1,1-Trichloroethane	ND		ug/l		0.50	0.16
Bromodichloromethane	ND		ug/l		0.50	0.19
1,1-Dichloropropene	ND		ug/l		1.0	0.24
Bromoform	ND		ug/l		1.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/l		0.50	0.17
Benzene	ND		ug/l		0.50	0.16
Toluene	ND		ug/l		0.75	0.20
Ethylbenzene	ND		ug/l		0.50	0.17
Chloromethane	ND		ug/l		2.0	0.20
Bromomethane	ND		ug/l		1.0	0.26
Vinyl chloride	ND		ug/l		0.20	0.07
Chloroethane	ND		ug/l		1.0	0.13
1,1-Dichloroethene	ND		ug/l		0.50	0.17
trans-1,2-Dichloroethene	ND		ug/l		0.75	0.16
1,2-Dichloroethene, Total	ND		ug/l		0.50	0.16
Trichloroethene	ND		ug/l		0.50	0.18
1,2-Dichlorobenzene	ND		ug/l		1.0	0.18
1,3-Dichlorobenzene	ND		ug/l		1.0	0.19

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 27816

Lab Number: L2155960 **Report Date:** 10/27/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/24/21 09:11 Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lat	o for sample(s):	01-03 Batch:	WG1562638-5	
1,4-Dichlorobenzene	ND	ug/l	1.0	0.19	
Methyl tert butyl ether	ND	ug/l	1.0	0.17	
p/m-Xylene	ND	ug/l	1.0	0.33	
o-Xylene	ND	ug/l	1.0	0.39	
Xylenes, Total	ND	ug/l	1.0	0.33	
cis-1,2-Dichloroethene	ND	ug/l	0.50	0.19	
Dibromomethane	ND	ug/l	1.0	0.36	
1,2,3-Trichloropropane	ND	ug/l	1.0	0.18	
Styrene	ND	ug/l	1.0	0.36	
Dichlorodifluoromethane	ND	ug/l	2.0	0.24	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	1.0	0.30	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	0.42	
2-Hexanone	ND	ug/l	5.0	0.52	
Bromochloromethane	ND	ug/l	1.0	0.15	
Tetrahydrofuran	ND	ug/l	2.0	0.52	
2,2-Dichloropropane	ND	ug/l	1.0	0.20	
1,2-Dibromoethane	ND	ug/l	1.0	0.19	
1,3-Dichloropropane	ND	ug/l	1.0	0.21	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	0.16	
Bromobenzene	ND	ug/l	1.0	0.15	
n-Butylbenzene	ND	ug/l	0.50	0.19	
sec-Butylbenzene	ND	ug/l	0.50	0.18	
tert-Butylbenzene	ND	ug/l	1.0	0.20	
o-Chlorotoluene	ND	ug/l	1.0	0.22	
p-Chlorotoluene	ND	ug/l	1.0	0.18	
1,2-Dibromo-3-chloropropane	ND	ug/l	1.0	0.35	
Hexachlorobutadiene	ND	ug/l	0.50	0.22	

L2155960

10/27/21

Lab Number:

Report Date:

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 27816

.....

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/24/21 09:11Analyst:PD

Parameter	Result	Qualifier Unit	ts	RL	MDL
Volatile Organics by GC/MS - West	oorough Lab	for sample(s):	01-03	Batch:	WG1562638-5
Isopropylbenzene	ND	ug	ı/I	0.50	0.19
p-Isopropyltoluene	ND	ug	ı/I	0.50	0.19
Naphthalene	ND	ug	ı/I	1.0	0.22
n-Propylbenzene	ND	ug	ı/I	0.50	0.17
1,2,3-Trichlorobenzene	ND	ug	ı/I	1.0	0.23
1,2,4-Trichlorobenzene	ND	ug	ı/I	1.0	0.22
1,3,5-Trimethylbenzene	ND	ug	ı/I	1.0	0.22
1,3,5-Trichlorobenzene	ND	ug	ı/I	1.0	0.14
1,2,4-Trimethylbenzene	ND	ug	ı/I	1.0	0.19
Ethyl ether	ND	ug	µ∕I	1.0	0.16
Diisopropyl Ether	ND	ug	µ∕I	1.0	0.42
Tert-Butyl Alcohol	ND	ug	µ∕I	10	1.4
Ethyl-Tert-Butyl-Ether	ND	ug	ı/I	1.0	0.18
Tertiary-Amyl Methyl Ether	ND	ug	ı/I	1.0	0.28

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	97		70-130				
Toluene-d8	100		70-130				
4-Bromofluorobenzene	98		70-130				
Dibromofluoromethane	102		70-130				

Lab Control Sample Analysis Batch Quality Control

Project Number: 27816 Lab Number: L2155960 Report Date: 10/27/21

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recover Qual Limits	ry RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough La	ab Associated sample(s):	01-03 Batch:	WG1562638-3 WG1562	638-4	
Methylene chloride	97	95	70-130	2	20
1,1-Dichloroethane	100	100	70-130	0	20
Chloroform	110	110	70-130	0	20
Carbon tetrachloride	94	100	63-132	6	20
1,2-Dichloropropane	100	110	70-130	10	20
Dibromochloromethane	88	96	63-130	9	20
1,1,2-Trichloroethane	98	100	70-130	2	20
Tetrachloroethene	110	110	70-130	0	20
Chlorobenzene	100	110	75-130	10	25
Trichlorofluoromethane	120	110	62-150	9	20
1,2-Dichloroethane	97	100	70-130	3	20
1,1,1-Trichloroethane	110	110	67-130	0	20
Bromodichloromethane	98	100	67-130	2	20
1,1-Dichloropropene	100	110	70-130	10	20
Bromoform	86	93	54-136	8	20
1,1,2,2-Tetrachloroethane	100	100	67-130	0	20
Benzene	100	100	70-130	0	25
Toluene	100	100	70-130	0	25
Ethylbenzene	110	110	70-130	0	20
Chloromethane	92	89	64-130	3	20
Bromomethane	81	79	39-139	3	20
Vinyl chloride	85	85	55-140	0	20
Chloroethane	120	94	55-138	24	Q 20

Lab Control Sample Analysis Batch Quality Control

Project Number: 27816 Lab Number: L2155960 Report Date: 10/27/21

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	, RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough La	b Associated sample(s): 01-03 Batch:	WG1562638-3 WG156263	38-4	
1,1-Dichloroethene	130	130	61-145	0	25
trans-1,2-Dichloroethene	100	100	70-130	0	20
Trichloroethene	100	100	70-130	0	25
1,2-Dichlorobenzene	110	110	70-130	0	20
1,3-Dichlorobenzene	110	110	70-130	0	20
1,4-Dichlorobenzene	110	110	70-130	0	20
Methyl tert butyl ether	94	97	63-130	3	20
p/m-Xylene	110	110	70-130	0	20
o-Xylene	110	110	70-130	0	20
cis-1,2-Dichloroethene	110	100	70-130	10	20
Dibromomethane	93	98	70-130	5	20
1,2,3-Trichloropropane	98	98	64-130	0	20
Styrene	115	115	70-130	0	20
Dichlorodifluoromethane	76	74	36-147	3	20
Acetone	76	74	58-148	3	20
Carbon disulfide	120	130	51-130	8	20
2-Butanone	84	87	63-138	4	20
4-Methyl-2-pentanone	85	90	59-130	6	20
2-Hexanone	83	88	57-130	6	20
Bromochloromethane	100	100	70-130	0	20
Tetrahydrofuran	82	94	58-130	14	20
2,2-Dichloropropane	120	120	63-133	0	20
1,2-Dibromoethane	100	100	70-130	0	20

Lab Control Sample Analysis Batch Quality Control

Project Number: 27816 Lab Number: L2155960 Report Date: 10/27/21

Parameter	LCS %Recovery	Qual	LCSI %Recov	D /ery Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Bat	ch: WG1562638-	-3 WG1562638-4				
1,3-Dichloropropane	98		100		70-130	2		20	
1,1,1,2-Tetrachloroethane	95		100		64-130	5		20	
Bromobenzene	110		110		70-130	0		20	
n-Butylbenzene	110		110		53-136	0		20	
sec-Butylbenzene	120		110		70-130	9		20	
tert-Butylbenzene	110		110		70-130	0		20	
o-Chlorotoluene	110		110		70-130	0		20	
p-Chlorotoluene	110		110		70-130	0		20	
1,2-Dibromo-3-chloropropane	86		93		41-144	8		20	
Hexachlorobutadiene	100		110		63-130	10		20	
Isopropylbenzene	120		110		70-130	9		20	
p-Isopropyltoluene	120		120		70-130	0		20	
Naphthalene	90		94		70-130	4		20	
n-Propylbenzene	120		110		69-130	9		20	
1,2,3-Trichlorobenzene	88		91		70-130	3		20	
1,2,4-Trichlorobenzene	100		100		70-130	0		20	
1,3,5-Trimethylbenzene	110		110		64-130	0		20	
1,3,5-Trichlorobenzene	110		110		70-130	0		20	
1,2,4-Trimethylbenzene	110		110		70-130	0		20	
Ethyl ether	120		130		59-134	8		20	
Diisopropyl Ether	94		96		70-130	2		20	
Tert-Butyl Alcohol	98		96		70-130	2		20	
Ethyl-Tert-Butyl-Ether	100		100		70-130	0		20	

Lab Control Sample Analysis

L LANDFILL	Batch Quality Control	Lab Number:	L2155960
		Report Date:	10/27/21

Project Name: KITTERY MUNICIPAL I

Project Number: 27816

Parameter	LCS %Recovery	Qual	L %R	LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03	Batch:	WG1562638-3	WG1562638-4				
Tertiary-Amyl Methyl Ether	98			100		66-130	2		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	100	96	70-130	
Toluene-d8	102	101	70-130	
4-Bromofluorobenzene	107	103	70-130	
Dibromofluoromethane	97	96	70-130	

SEMIVOLATILES

		Serial_No:	10272119:21
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960
Project Number:	27816	Report Date:	10/27/21
	SAMPLE RESULTS		
Lab ID:	L2155960-01	Date Collected:	10/13/21 11:25
Client ID:	B110	Date Received:	10/13/21
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method:	ALPHA 23528
Analytical Method:	134,LCMSMS-ID	Extraction Date:	10/18/21 05:00
Analytical Date:	10/22/21 21:31		
Analyst:	MP		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	34.7		ng/l	1.81	0.370	1			
Perfluoropentanoic Acid (PFPeA)	90.9		ng/l	1.81	0.359	1			
Perfluorobutanesulfonic Acid (PFBS)	17.0		ng/l	1.81	0.216	1			
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.81	0.410	1			
Perfluorohexanoic Acid (PFHxA)	99.2		ng/l	1.81	0.298	1			
Perfluoropentanesulfonic Acid (PFPeS)	20.3		ng/l	1.81	0.222	1			
Perfluoroheptanoic Acid (PFHpA)	64.0		ng/l	1.81	0.204	1			
Perfluorohexanesulfonic Acid (PFHxS)	267		ng/l	1.81	0.341	1			
Perfluorooctanoic Acid (PFOA)	162		ng/l	1.81	0.214	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.81	1.21	1			
Perfluoroheptanesulfonic Acid (PFHpS)	3.83		ng/l	1.81	0.624	1			
Perfluorononanoic Acid (PFNA)	1.60	J	ng/l	1.81	0.283	1			
Perfluorooctanesulfonic Acid (PFOS)	43.6		ng/l	1.81	0.457	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.81	0.276	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.81	1.10	1			
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.81	1.02	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.81	0.588	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.81	0.236	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.81	0.889	1			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.81	0.526	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.81	0.729	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.81	0.337	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.81	0.297	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.81	0.225	1			
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	45.4	20.6	1			
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.81	0.305	1			
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.63	1.12	1			

		Serial_No:10272119:21					
Project Name:	KITTERY MUNICIPAL	LANDFILL			Lab Num	ber:	L2155960
Project Number:	27816				Report D	ate:	10/27/21
		SAMPL	E RESULTS	6			
Lab ID:	L2155960-01				Date Collec	cted:	10/13/21 11:25
Client ID:	B110				Date Recei	ved:	10/13/21
Sample Location:	MACKENZIE RD., K	ITTERY, ME			Field Prep:		Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab							
Perfluorooctadecanoic Ac	id (PFODA)	ND		ng/l	3.63	1.04	1
PFAS, Total (6)		538	J	ng/l	1.81	0.204	1
						Acc	eptance
Surrogate				% Recovery	Qualifier	C	Criteria
Perfluoro[13C4]But	anoic Acid (MPFBA)			89			58-132
Perfluoro[13C5]Per	ntanoic Acid (M5PFPEA)			96			62-163
Perfluoro[2,3,4-130	C3]Butanesulfonic Acid (M3PF	FBS)		95			70-131
1H,1H,2H,2H-Perfl	uoro[1,2-13C2]Hexanesulfoni	c Acid (M2-4:2FT	5)	187	Q		12-142
Perfluoro[1,2,3,4,6-	13C51Hexanoic Acid (M5PFF	HxA)		83			57-129
	····] · · · · · (·						
Perfluoro[1,2,3,4-13	3C4]Heptanoic Acid (M4PFH	pA)		88			60-129

Peniuoro[2,3,4-13C3]Bulanesulionic Acid (M3PFBS)	95		70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	187	Q	12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	83		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	88		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	88		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	128		14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	93		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	91		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	84		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	103		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	71		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	87		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	28		10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	98		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	77		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	74		22-136	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	109		10-165	
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	56		10-206	

		Serial_No:	10272119:21
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960
Project Number:	27816	Report Date:	10/27/21
	SAMPLE RESULTS		
Lab ID:	L2155960-02	Date Collected:	10/13/21 11:55
Client ID:	B-109	Date Received:	10/13/21
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method:	ALPHA 23528
Analytical Method:	134,LCMSMS-ID	Extraction Date:	10/18/21 05:00
Analytical Date:	10/22/21 22:04		
Analyst:	MP		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilutio	on - Mansfield	d Lab				
Perfluorobutanoic Acid (PERA)	17 1		ng/l	1 9/	0 395	1
Porfluoroportanoio Acid (PEPoA)	20.4		ng/l	1.04	0.333	1
	20.4		ng/i	1.94	0.364	
	25.0		ng/I	1.94	0.231	1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.94	0.438	1
Perfluorohexanoic Acid (PFHxA)	151		ng/l	1.94	0.318	1
Perfluoropentanesulfonic Acid (PFPeS)	36.5		ng/l	1.94	0.238	1
Perfluoroheptanoic Acid (PFHpA)	14.1		ng/l	1.94	0.218	1
Perfluorohexanesulfonic Acid (PFHxS)	661		ng/l	1.94	0.364	1
Perfluorooctanoic Acid (PFOA)	220		ng/l	1.94	0.229	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.94	1.29	1
Perfluoroheptanesulfonic Acid (PFHpS)	25.1		ng/l	1.94	0.667	1
Perfluorononanoic Acid (PFNA)	5.25		ng/l	1.94	0.302	1
Perfluorooctanesulfonic Acid (PFOS)	708		ng/l	1.94	0.488	1
Perfluorodecanoic Acid (PFDA)	3.76		ng/l	1.94	0.295	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.94	1.17	1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.94	1.08	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.94	0.628	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.94	0.252	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.94	0.950	1
Perfluorooctanesulfonamide (FOSA)	0.946	JF	ng/l	1.94	0.562	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.94	0.779	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.94	0.360	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.94	0.317	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.94	0.240	1
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	48.5	22.0	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.94	0.326	1
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.88	1.20	1

					Se	erial_No	o:10272119:21
Project Name:	KITTERY MUNICIP	AL LANDFILL			Lab Num	ber:	L2155960
Project Number:	27816				Report D	ate:	10/27/21
		SAMPLE	E RESULT	S			
Lab ID: Client ID: Sample Location:	L2155960-02 B-109 MACKENZIE RD.,	KITTERY, ME			Date Colle Date Rece Field Prep:	cted: ived:	10/13/21 11:55 10/13/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alky	yl Acids by Isotope Dilu	ution - Mansfield	Lab				
Perfluorooctadecanoic A	cid (PFODA)	ND		ng/l	3.88	1.11	1
PFAS, Total (6)		1610		ng/l	1.94	0.218	1
Surrogate				% Recovery	Qualifier	Acc (ceptance Criteria
Perfluoro[13C4]Bu	utanoic Acid (MPFBA)			97			58-132
Perfluoro[13C5]Pe	entanoic Acid (M5PFPEA)			99			62-163
Perfluoro[2,3,4-13	C3]Butanesulfonic Acid (M3	BPFBS)		125			70-131
1H,1H,2H,2H-Per	fluoro[1,2-13C2]Hexanesulf	onic Acid (M2-4:2FTS	5)	273	Q		12-142
Perfluoro[1,2,3,4,6	6-13C5]Hexanoic Acid (M5P	'FHxA)		71			57-129
Perfluoro[1,2,3,4-7	13C4]Heptanoic Acid (M4PF	FHpA)		90			60-129
Perfluoro[1,2,3-13	C3]Hexanesulfonic Acid (M	3PFHxS)		114			71-134
Perfluoro[13C8]O	ctanoic Acid (M8PFOA)			94			62-129
1H,1H,2H,2H-Per	fluoro[1,2-13C2]Octanesulfo	onic Acid (M2-6:2FTS))	265	Q		14-147
Perfluoro[13C9]No	onanoic Acid (M9PFNA)			103			59-139
Perfluoro[13C8]O	ctanesulfonic Acid (M8PFO	5)		105			69-131
Perfluoro[1,2,3,4,5	5,6-13C6]Decanoic Acid (M6	SPFDA)		96			62-124
1H,1H,2H,2H-Per	fluoro[1,2-13C2]Decanesulf	onic Acid (M2-8:2FTS	5)	204	Q		10-162
N-Deuteriomethyl	perfluoro-1-octanesulfonami	doacetic Acid (d3-NN	leFOSAA)	81			24-116
Perfluoro[1,2,3,4,5	5,6,7-13C7]Undecanoic Acid	l (M7-PFUDA)		91			55-137
Perfluoro[13C8]O	ctanesulfonamide (M8FOSA	A)		31			10-112
N-Deuterioethylpe	erfluoro-1-octanesulfonamido	pacetic Acid (d5-NEtF	OSAA)	96			27-126
Perfluoro[1,2-13C	2]Dodecanoic Acid (MPFDC	DA)		76			48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)			77			22-136	

10-165

10-206

		Serial_No:	:10272119:21
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960
Project Number:	27816	Report Date:	10/27/21
	SAMPLE RESULTS		
Lab ID:	L2155960-03	Date Collected:	10/13/21 10:05
Client ID:	KITTERY PW-1	Date Received:	10/13/21
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 134,LCMSMS-ID 10/22/21 22:21 MP	Extraction Method: Extraction Date:	: ALPHA 23528 10/18/21 05:00

Result	Qualifier	Units	RL	MDL	Dilution Factor
on - Mansfield	d Lab				
20.1		ng/l	1.79	0.365	1
34.7		ng/l	1.79	0.355	1
12.6		ng/l	1.79	0.213	1
ND		ng/l	1.79	0.405	1
52.4		ng/l	1.79	0.294	1
9.14		ng/l	1.79	0.220	1
26.0		ng/l	1.79	0.202	1
74.1		ng/l	1.79	0.337	1
132		ng/l	1.79	0.211	1
ND		ng/l	1.79	1.19	1
2.25		ng/l	1.79	0.616	1
3.80		ng/l	1.79	0.279	1
79.6		ng/l	1.79	0.451	1
1.15	J	ng/l	1.79	0.272	1
ND		ng/l	1.79	1.08	1
ND		ng/l	1.79	1.00	1
1.68	J	ng/l	1.79	0.580	1
ND		ng/l	1.79	0.233	1
ND		ng/l	1.79	0.878	1
0.738	JF	ng/l	1.79	0.519	1
3.52		ng/l	1.79	0.720	1
ND		ng/l	1.79	0.333	1
ND		ng/l	1.79	0.293	1
ND		ng/l	1.79	0.222	1
ND		ng/l	44.8	20.3	1
ND		ng/l	1.79	0.301	1
ND		ng/l	3.58	1.11	1
	Result 20.1 34.7 12.6 ND 52.4 9.14 26.0 74.1 132 ND 2.25 3.80 79.6 1.15 ND 1.68 ND 0.738 3.52 ND ND	Result Qualifier 20.1 20.1 34.7 12.6 ND 12.6 ND 52.4 9.14 26.0 74.1 26.0 74.1 32 3.80 2.25 3.80 3.80 79.6 3.80 79.6 3.80 ND 3.80 79.6 3.80 79.6 3.80 ND 3.80 79.6 3.80 ND 3.80 79.6 3.80 ND 3.80 ND 3.80 ND 3.80 ND 3.80 ND 3.52 ND ND ND ND	Result Qualifier Units 20.1 ng/l 34.7 ng/l 12.6 ng/l ND ng/l 52.4 ng/l 9.14 ng/l 26.0 ng/l 74.1 ng/l 132 ng/l 132 ng/l 79.6 ng/l 3.80 ng/l 1.15 J ng/l 1.15 J ng/l 1.15 J ng/l 0.738 JF ng/l ND ng/l ng/l ND <t< td=""><td>Result Qualifier Units RL 20.1 ng/l 1.79 34.7 ng/l 1.79 12.6 ng/l 1.79 ND ng/l 1.79 52.4 ng/l 1.79 9.14 ng/l 1.79 9.14 ng/l 1.79 26.0 ng/l 1.79 74.1 ng/l 1.79 132 ng/l 1.79 ND ng/l 1.79 3.80 ng/l 1.79 3.80 ng/l 1.79 79.6 ng/l 1.79 ND ng/l 1.79</td><td>Result Qualifier Units RL MDL Dn - Mansfield Lab ng/l 1.79 0.365 34.7 ng/l 1.79 0.355 12.6 ng/l 1.79 0.213 ND ng/l 1.79 0.213 ND ng/l 1.79 0.224 9.14 ng/l 1.79 0.220 26.0 ng/l 1.79 0.220 74.1 ng/l 1.79 0.211 ND ng/l 1.79 0.220 74.1 ng/l 1.79 0.211 ND ng/l 1.79 0.212 ND ng/l 1.79 0.221 ND ng/l 1.79</td></t<>	Result Qualifier Units RL 20.1 ng/l 1.79 34.7 ng/l 1.79 12.6 ng/l 1.79 ND ng/l 1.79 52.4 ng/l 1.79 9.14 ng/l 1.79 9.14 ng/l 1.79 26.0 ng/l 1.79 74.1 ng/l 1.79 132 ng/l 1.79 ND ng/l 1.79 3.80 ng/l 1.79 3.80 ng/l 1.79 79.6 ng/l 1.79 ND ng/l 1.79	Result Qualifier Units RL MDL Dn - Mansfield Lab ng/l 1.79 0.365 34.7 ng/l 1.79 0.355 12.6 ng/l 1.79 0.213 ND ng/l 1.79 0.213 ND ng/l 1.79 0.224 9.14 ng/l 1.79 0.220 26.0 ng/l 1.79 0.220 74.1 ng/l 1.79 0.211 ND ng/l 1.79 0.220 74.1 ng/l 1.79 0.211 ND ng/l 1.79 0.212 ND ng/l 1.79 0.221 ND ng/l 1.79

		Serial_N	o:10272119:21
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960
Project Number:	27816	Report Date:	10/27/21
	SAMPLE RESULTS		
Lab ID:	L2155960-03	Date Collected:	10/13/21 10:05
Client ID:	KITTERY PW-1	Date Received:	10/13/21
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified

J

ng/l

1.79

0.202

Sample Depth:						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab						
Perfluorooctadecanoic Acid (PFODA)	ND		ng/l	3.58	1.03	1

317

			Accontonce	
Surrogate	% Recovery	Qualifier	Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	97		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	84		62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	96		70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	234	Q	12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	69		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	86		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	103		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	96		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	275	Q	14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	108		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	97		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	98		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	268	Q	10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	135	Q	24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	106		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	46		10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	128	Q	27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	89		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	83		22-136	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	107		10-165	
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	68		10-206	

1

PFAS, Total (6)

		Serial_No	:10272119:21				
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960				
Project Number:	27816	Report Date:	10/27/21				
SAMPLE RESULTS							
Lab ID:	L2155960-04	Date Collected:	10/13/21 12:00				
Client ID:	FIELD REAGENT BLANK	Date Received:	10/13/21				
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified				
Sample Depth:							
Matrix:	Water	Extraction Method	: ALPHA 23528				
Analytical Method:	134,LCMSMS-ID	Extraction Date:	10/18/21 05:00				
Analytical Date:	10/22/21 22:37						
Analyst:	MP						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Parfluorobutancia Acid (PERA)	ND		ng/	1 77	0 361	1
Perflueroportonoio Acid (PEDa)	0.206		ng/i	1.77	0.301	1
	0.396	J	ng/I	1.77	0.350	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.77	0.211	1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.77	0.400	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.77	0.290	1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.77	0.217	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.77	0.199	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.77	0.333	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.77	0.209	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	2.84		ng/l	1.77	1.18	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.77	0.609	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.77	0.276	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.77	0.446	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.77	0.269	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.77	1.07	1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.77	0.991	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.77	0.573	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.77	0.230	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.77	0.867	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.77	0.513	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.77	0.711	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.77	0.329	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.77	0.290	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.77	0.219	1
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	44.2	20.1	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.77	0.297	1
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.54	1.10	1

		Serial_No:10272119:21			
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960		
Project Number:	27816	Report Date:	10/27/21		
	SAMPLE RESULTS				
Lab ID:	L2155960-04	Date Collected:	10/13/21 12:00		
Client ID:	FIELD REAGENT BLANK	Date Received:	10/13/21		
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified		
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfield La	ab				
Perfluorooctadecanoic Acid (PFODA)	ND		ng/l	3.54	1.02	1
PFAS, Total (6)	ND		ng/l	1.77	0.199	1
Surrogate			% Recovery	Qualifier	Acce Cr	ptance iteria
Perfluoro[13C4]Butanoic Acid (MPFBA)			98		5	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)			116		6	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFB	SS)		106		7	/0-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic	Acid (M2-4:2FTS)		93		1	2-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)			97	57-129		
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA	N)		97		6	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFF	HxS)		107		7	'1-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)			101		6	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic A	Acid (M2-6:2FTS)		91		1	4-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)			106		5	9-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)			103		6	9-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFD	DA)		105		6	2-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic	Acid (M2-8:2FTS)		101		1	0-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoad	cetic Acid (d3-NMe	FOSAA)	106		2	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7	7-PFUDA)		105		5	5-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)			44		1	0-112
N-Deuterioethylperfluoro-1-octanesulfonamidoace	tic Acid (d5-NEtFC	SAA)	105		2	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)			95		4	8-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTED	DA)		93		2	22-136
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropro (M3HFPO-DA)	poxy]-13C3-Propa	noic Acid	111		1	0-165
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)			73		1	0-206

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab N
Project Number:	27816	Repor

 Lab Number:
 L2155960

 Report Date:
 10/27/21

Method Blank Analysis Batch Quality Control

Analytical Method:	134,LCMSMS-ID
Analytical Date:	10/19/21 12:19
Analyst:	MP

Extraction Method: ALPHA 23528 Extraction Date: 10/18/21 05:00

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for s	ample(s):	01-04 Batch:	WG1559766-1
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.408	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.396	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.238	
1H,1H,2H,2H-Perfluorohexanesulfonic Acio (4:2FTS)	ND		ng/l	2.00	0.452	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00	0.328	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00	0.245	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.225	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.376	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.236	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00	1.33	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.688	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.312	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.504	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.304	
1H,1H,2H,2H-Perfluorodecanesulfonic Acio (8:2FTS)	I ND		ng/l	2.00	1.21	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	2.00	1.12	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	c ND		ng/l	2.00	0.648	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.260	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.980	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.580	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00	0.804	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.372	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.327	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.248	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPC DA)	ND D-		ng/l	50.0	22.7	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00	0.336	

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960
Project Number:	27816	Report Date:	10/27/21
	Method Blank Analysis Batch Quality Control		

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	10/19/21 12:19	Extraction Date:	10/18/21 05:00
Analyst:	MP		

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	e Dilution -	Mansfield I	Lab for sa	ample(s): 01-04	Batch:	WG1559766-1
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	4.00	1.24	
Perfluorooctadecanoic Acid (PFODA)	ND		ng/l	4.00	1.15	
PFAS, Total (6)	ND		ng/l	2.00	0.225	

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960
Project Number:	27816	Report Date:	10/27/21
	Method Blank Analysis Batch Quality Control		

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	10/19/21 12:19	Extraction Date:	10/18/21 05:00
Analyst:	MP		

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by Isotop	e Dilution -	Mansfield L	ab for sa	ample(s):	01-04	Batch:	WG1559766-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	100	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	107	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	106	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	103	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	102	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	107	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	114	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	123	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	103	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	105	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	129	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	73	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	107	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	35	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	73	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	90	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	88	22-136
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	111	10-165
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	82	10-206
1H,1H,2H,2H-Perfluorododecane Sulfonate (M2D4-10:2FTS)	122	50-150

Lab Control Sample Analysis

Batch Quality Control

Project Number: 27816

Lab Number: L2155960 Report Date: 10/27/21

LCSD LCS %Recovery RPD %Recovery %Recoverv Limits RPD Limits Parameter Qual Qual Qual Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-04 Batch: WG1559766-2 Perfluorobutanoic Acid (PFBA) 104 -67-148 -30 Perfluoropentanoic Acid (PFPeA) 104 63-161 30 --Perfluorobutanesulfonic Acid (PFBS) 106 65-157 30 --1H,1H,2H,2H-Perfluorohexanesulfonic 102 37-219 30 --Acid (4:2FTS) Perfluorohexanoic Acid (PFHxA) 101 69-168 30 --Perfluoropentanesulfonic Acid (PFPeS) 110 52-156 30 --Perfluoroheptanoic Acid (PFHpA) 101 58-159 30 --Perfluorohexanesulfonic Acid (PFHxS) 104 69-177 30 --Perfluorooctanoic Acid (PFOA) 100 63-159 30 --1H,1H,2H,2H-Perfluorooctanesulfonic 108 49-187 30 -_ Acid (6:2FTS) Perfluoroheptanesulfonic Acid (PFHpS) 102 61-179 30 --Perfluorononanoic Acid (PFNA) 92 68-171 30 --Perfluorooctanesulfonic Acid (PFOS) 105 52-151 30 --Perfluorodecanoic Acid (PFDA) 92 63-171 30 _ -1H,1H,2H,2H-Perfluorodecanesulfonic 94 56-173 30 --Acid (8:2FTS) Perfluorononanesulfonic Acid (PFNS) 48-150 98 30 --N-Methyl 60-166 30 101 -_ Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) Perfluoroundecanoic Acid (PFUnA) 96 60-153 30 --Perfluorodecanesulfonic Acid (PFDS) 106 38-156 30 --Perfluorooctanesulfonamide (FOSA) 97 46-170 30 --N-Ethyl Perfluorooctanesulfonamidoacetic 100 45-170 30 --Acid (NEtFOSAA) Perfluorododecanoic Acid (PFDoA) 102 67-153 30 --

Lab Control Sample Analysis Batch Quality Control

Batch (

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 27816

 Lab Number:
 L2155960

 Report Date:
 10/27/21

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Limits RPD Limits Qual Qual Qual Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-04 Batch: WG1559766-2 Perfluorotridecanoic Acid (PFTrDA) 112 48-158 30 --Perfluorotetradecanoic Acid (PFTA) 97 59-182 30 --2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid 102 57-162 30 --(HFPO-DA) 4,8-Dioxa-3h-Perfluorononanoic Acid 101 69-143 30 --(ADONA) Perfluorohexadecanoic Acid (PFHxDA) 108 40-167 30 --Perfluorooctadecanoic Acid (PFODA) 52 10-119 30 --

Lab Control Sample Analysis Batch Quality Control

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 27816

Lab Number: L2155960

Report Date: 10/27/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	ample(s): 01-04	Batch:	WG1559766-2			

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	99				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	104				62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	107				70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	111				12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	100				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	99				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	104				71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	105				62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	127				14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	118				59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	108				69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	106				62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	144				10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	79				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109				55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	43				10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	78				27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	93				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	93				22-136
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	104				10-165
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	84				10-206
1H,1H,2H,2H-Perfluorododecane Sulfonate (M2D4-10:2FTS)	137				50-150

Matrix Spike Analysis

Project Name: Project Number:	KITTERY MUNICIPAL LANDFILL Batch Quality Control 27816					Lab Nur Report D	iber: ate:	L2155960 10/27/21		
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids Client ID: MS Sample	by Isotope Dilution	n - Mansfield	Lab Assoc	ciated sample(s):	01-04	QC Batch	ID: WG155976	6-3 WG1559766-4	QC S	ample: L2153843-01
1H,1H,2H,2H-Perfluorooctanesul Acid (6:2FTS)	lfonic 946	190	1170	118		1110	86	49-187	5	30

	MS	5	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
- 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	180	Q	185	Q	14-147	

METALS

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960						
Project Number:	27816	Report Date:	10/27/21						
SAMPLE RESULTS									
Lab ID:	L2155960-01	Date Collected:	10/13/21 11:25						
Client ID:	B110	Date Received:	10/13/21						
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified						

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.005	J	mg/l	0.005	0.002	1	10/19/21 07:08	10/21/21 00:05	EPA 3005A	1,6010D	DL
Calcium, Total	87.0		mg/l	0.100	0.035	1	10/19/21 07:08	10/21/21 00:05	EPA 3005A	1,6010D	DL
Iron, Total	0.078		mg/l	0.050	0.009	1	10/19/21 07:08	10/21/21 00:05	EPA 3005A	1,6010D	DL
Magnesium, Total	30.4		mg/l	0.100	0.015	1	10/19/21 07:08	10/21/21 00:05	EPA 3005A	1,6010D	DL
Manganese, Total	0.041		mg/l	0.010	0.002	1	10/19/21 07:08	10/21/21 00:05	EPA 3005A	1,6010D	DL
Potassium, Total	4.97		mg/l	2.50	0.237	1	10/19/21 07:08	10/21/21 00:05	EPA 3005A	1,6010D	DL
Sodium, Total	26.2		mg/l	2.00	0.120	1	10/19/21 07:08	10/21/21 00:05	EPA 3005A	1,6010D	DL

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960					
Project Number:	27816	Report Date:	10/27/21					
SAMPLE RESULTS								
Lab ID:	L2155960-02	Date Collected:	10/13/21 11:55					
Client ID:	B-109	Date Received:	10/13/21					
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified					

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.003	J	mg/l	0.005	0.002	1	10/19/21 07:08	10/21/21 00:09	EPA 3005A	1,6010D	DL
Calcium, Total	86.1		mg/l	0.100	0.035	1	10/19/21 07:08	10/21/21 00:09	EPA 3005A	1,6010D	DL
Iron, Total	0.055		mg/l	0.050	0.009	1	10/19/21 07:08	10/21/21 00:09	EPA 3005A	1,6010D	DL
Magnesium, Total	32.8		mg/l	0.100	0.015	1	10/19/21 07:08	10/21/21 00:09	EPA 3005A	1,6010D	DL
Manganese, Total	0.591		mg/l	0.010	0.002	1	10/19/21 07:08	10/21/21 00:09	EPA 3005A	1,6010D	DL
Potassium, Total	5.61		mg/l	2.50	0.237	1	10/19/21 07:08	10/21/21 00:09	EPA 3005A	1,6010D	DL
Sodium, Total	48.4		mg/l	2.00	0.120	1	10/19/21 07:08	10/21/21 00:09	EPA 3005A	1,6010D	DL

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2155960					
Project Number:	27816	Report Date:	10/27/21					
SAMPLE RESULTS								
Lab ID:	L2155960-03	Date Collected:	10/13/21 10:05					
Client ID:	KITTERY PW-1	Date Received:	10/13/21					
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified					

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.026		mg/l	0.005	0.002	1	10/19/21 07:08	10/21/21 00:13	EPA 3005A	1,6010D	DL
Calcium, Total	112		mg/l	0.100	0.035	1	10/19/21 07:08	10/21/21 00:13	EPA 3005A	1,6010D	DL
Iron, Total	58.8		mg/l	0.050	0.009	1	10/19/21 07:08	10/21/21 00:13	EPA 3005A	1,6010D	DL
Magnesium, Total	18.8		mg/l	0.100	0.015	1	10/19/21 07:08	10/21/21 00:13	EPA 3005A	1,6010D	DL
Manganese, Total	1.27		mg/l	0.010	0.002	1	10/19/21 07:08	10/21/21 00:13	EPA 3005A	1,6010D	DL
Potassium, Total	21.5		mg/l	2.50	0.237	1	10/19/21 07:08	10/21/21 00:13	EPA 3005A	1,6010D	DL
Sodium, Total	41.1		mg/l	2.00	0.120	1	10/19/21 07:08	10/21/21 00:13	EPA 3005A	1,6010D	DL

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:27816

 Lab Number:
 L2155960

 Report Date:
 10/27/21

Method Blank Analysis Batch Quality Control

Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
_ab for sample(s): (01-03 E	Batch: WG	615584	37-1				
ND	mg/l	0.005	0.002	1	10/19/21 07:08	10/20/21 22:42	1,6010D	DL
ND	mg/l	0.100	0.035	1	10/19/21 07:08	10/20/21 22:42	1,6010D	DL
ND	mg/l	0.050	0.009	1	10/19/21 07:08	10/20/21 22:42	1,6010D	DL
ND	mg/l	0.100	0.015	1	10/19/21 07:08	10/20/21 22:42	1,6010D	DL
ND	mg/l	0.010	0.002	1	10/19/21 07:08	10/20/21 22:42	1,6010D	DL
ND	mg/l	2.50	0.237	1	10/19/21 07:08	10/20/21 22:42	1,6010D	DL
ND	mg/l	2.00	0.120	1	10/19/21 07:08	10/20/21 22:42	1,6010D	DL
	Result Qualifier ab for sample(s): ND ND	Result QualifierUnitsab for sample(s):01-03INDmg/lmg/lNDmg/lmg/lNDmg/lmg/lNDmg/lmg/lNDmg/lmg/lNDmg/lmg/lNDmg/lmg/lNDmg/lmg/lNDmg/lmg/lNDmg/lmg/lNDmg/lmg/l	Result Qualifier Units RL ab for sample(s): 01-03 Batch: WC ND mg/l 0.005 MC ND mg/l 0.100 MC ND mg/l 0.050 MC ND mg/l 0.050 MC ND mg/l 0.0100 MC ND mg/l 0.010 MC ND mg/l 0.010 MC ND mg/l 0.250 MC ND mg/l 2.50 MC	Result Qualifier Units RL MDL ab for sample(s): 01-03 Batch: WG15584 ND mg/l 0.005 0.002 ND mg/l 0.100 0.035 ND mg/l 0.050 0.009 ND mg/l 0.050 0.009 ND mg/l 0.0100 0.015 ND mg/l 0.010 0.012 ND mg/l 0.010 0.021 ND mg/l 0.010 0.022 ND mg/l 0.010 0.022 ND mg/l 2.50 0.237 ND mg/l 2.00 0.120	Result Qualifier Units RL MDL Dilution ab for sample(s): 01-03 Batch: WSTSTS 1 ND mg/l 0.005 0.002 1 ND mg/l 0.100 0.035 1 ND mg/l 0.050 0.002 1 ND mg/l 0.050 0.003 1 ND mg/l 0.010 0.015 1 ND mg/l 0.010 0.002 1 ND mg/l 0.010 0.023 1 ND mg/l 0.010 0.023 1 ND mg/l 2.50 0.237 1 ND mg/l 2.00 0.120 1	Result QualifierUnitsRLMDLDilutionDate Preparedab for sample(s):01-03Batch: WSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTST	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Ab for sample(s): 01-03 Batch: VUSISS8437-1 10/19/21 07:08 10/20/21 22:42 ND mg/l 0.005 0.002 1 10/19/21 07:08 10/20/21 22:42 ND mg/l 0.050 0.009 1 10/19/21 07:08 10/20/21 22:42 ND mg/l 0.050 0.009 1 10/19/21 07:08 10/20/21 22:42 ND mg/l 0.010 0.015 1 10/19/21 07:08 10/20/21 22:42 ND mg/l 0.010 0.002 1 10/19/21 07:08 10/20/21 22:42 ND mg/l 0.010 0.002 1 10/19/21 07:08 10/20/21 22:42 ND mg/l 2.50 0.237 1 10/19/21 07:08 10/20/21 22:42 ND mg/l 2.00 0.120 1 10/19/21 07:08 10/20/21 22:42	Result QualifierUnitsRLMDLDilution MDLDate PreparedDate AnalyzedAnalytical Methodab for sample(s):01-03Batch: WSI558437510/19/21 07:0810/20/21 22:421,60100NDmg/I0.0050.002110/19/21 07:0810/20/21 22:421,60100NDmg/I0.0050.009110/19/21 07:0810/20/21 22:421,60100NDmg/I0.0100.015110/19/21 07:0810/20/21 22:421,60100NDmg/I0.0100.002110/19/21 07:0810/20/21 22:421,60100NDmg/I0.0100.027110/19/21 07:0810/20/21 22:421,60100NDmg/I2.500.237110/19/21 07:0810/20/21 22:421,60100NDmg/I2.000.120110/19/21 07:0810/20/21 22:421,60100

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis

Batch Quality Control

Project Number: 27816

 Lab Number:
 L2155960

 Report Date:
 10/27/21

LCS LCSD %Recovery %Recovery %Recovery Limits Parameter Qual RPD **RPD Limits** Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01-03 Batch: WG1558437-2 Arsenic, Total 113 80-120 --Calcium, Total 107 80-120 --Iron, Total 80-120 96 --Magnesium, Total 105 80-120 --Manganese, Total 102 80-120 --Potassium, Total 80-120 108 --Sodium, Total 106 80-120 --

INORGANICS & MISCELLANEOUS

Project Name:	KITTERY MUNICIPAL LANDFILL
Project Number:	27816

Lab Number: L2155960 Report Date: 10/27/21

SAMPLE RESULTS

Lab ID:	L2155960-01	Date Collected:	10/13/21 11:25
Client ID:	B110	Date Received:	10/13/21
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	orough Lal)								
Alkalinity, Total	182.	m	g CaCO3/L	2.00	NA	1	-	10/26/21 11:35	121,2320B	JB
Solids, Total Dissolved	490		mg/l	10	3.1	1	-	10/15/21 09:50	121,2540C	DW
Nitrogen, Ammonia	ND		mg/l	0.075	0.024	1	10/23/21 03:30	10/25/21 18:04	121,4500NH3-BH	AT
Nitrogen, Nitrate	0.26		mg/l	0.10	0.023	1	-	10/14/21 02:37	44,353.2	MR
Total Organic Carbon	1.03		mg/l	0.500	0.114	1	-	10/20/21 07:26	121,5310C	DW
Anions by Ion Chromatogr	aphy - Wes [.]	borough	Lab							
Chloride	54.0		mg/l	5.00	0.839	10	-	10/24/21 21:19	44,300.0	SH
Sulfate	159.		mg/l	10.0	4.54	10	-	10/24/21 21:19	44,300.0	SH

Project Name:	KITTERY MUNICIPAL LANDFILL
Project Number:	27816

 Lab Number:
 L2155960

 Report Date:
 10/27/21

SAMPLE RESULTS

Lab ID:	L2155960-02	Date Collected:	10/13/21 11:55
Client ID:	B-109	Date Received:	10/13/21
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	orough Lab)								
Alkalinity, Total	285.	m	g CaCO3/L	2.00	NA	1	-	10/26/21 11:35	121,2320B	JB
Solids, Total Dissolved	540		mg/l	10	3.1	1	-	10/15/21 09:50	121,2540C	DW
Nitrogen, Ammonia	0.423		mg/l	0.075	0.024	1	10/23/21 03:30	10/25/21 18:07	121,4500NH3-BH	AT
Nitrogen, Nitrate	0.046	J	mg/l	0.10	0.023	1	-	10/14/21 02:39	44,353.2	MR
Total Organic Carbon	2.48		mg/l	0.500	0.114	1	-	10/20/21 07:45	121,5310C	DW
Anions by Ion Chromatogra	phy - West	borough	Lab							
Chloride	132.		mg/l	5.00	0.839	10	-	10/24/21 21:30	44,300.0	SH
Sulfate	11.8		mg/l	1.00	0.454	1	-	10/22/21 23:45	44,300.0	AT

Project Name:	KITTERY MUNICIPAL LANDFILL
Project Number:	27816

Lab Number: L2155960 Report Date: 10/27/21

SAMPLE RESULTS

Lab ID:	L2155960-03	Date Collected:	10/13/21 10:05
Client ID:	KITTERY PW-1	Date Received:	10/13/21
Sample Location:	MACKENZIE RD., KITTERY, ME	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	b								
Alkalinity, Total	383.	m	g CaCO3/L	2.00	NA	1	-	10/26/21 11:35	121,2320B	JB
Solids, Total Dissolved	540		mg/l	10	3.1	1	-	10/15/21 09:50	121,2540C	DW
Nitrogen, Ammonia	2.07		mg/l	0.075	0.024	1	10/23/21 03:30	10/25/21 18:08	121,4500NH3-BH	AT
Nitrogen, Nitrate	0.032	J	mg/l	0.10	0.023	1	-	10/14/21 02:40	44,353.2	MR
Total Organic Carbon	14.7		mg/l	2.00	0.456	4	-	10/20/21 08:02	121,5310C	DW
Anions by Ion Chromato	ography - Wes	tborough	Lab							
Chloride	72.0		mg/l	5.00	0.839	10	-	10/24/21 21:41	44,300.0	SH
Sulfate	ND		mg/l	1.00	0.454	1	-	10/22/21 23:34	44,300.0	AT

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:27816

 Lab Number:
 L2155960

 Report Date:
 10/27/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	lifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab for	or samp	ole(s): 01-	03 Bat	ch: WG	61558366-	1			
Nitrogen, Nitrate	ND		mg/l	0.10	0.023	1	-	10/14/21 02:32	44,353.2	MR
General Chemistry - We	stborough Lab for	or samp	ole(s): 01-	03 Bat	ch: WG	61558961-	1			
Solids, Total Dissolved	ND		mg/l	10	3.1	1	-	10/15/21 09:50	121,2540C	DW
General Chemistry - We	stborough Lab fo	or samp	ole(s): 01-	03 Bat	ch: WG	61560764-	1			
Total Organic Carbon	ND		mg/l	0.500	0.114	1		10/20/21 05:24	121,5310C	DW
General Chemistry - We	stborough Lab fo	or samp	ole(s): 01-	03 Bat	ch: WG	61562189-	1			
Nitrogen, Ammonia	ND		mg/l	0.075	0.024	1	10/23/21 03:30	10/25/21 17:41	121,4500NH3-B	H AT
Anions by Ion Chromato	graphy - Westbo	rough L	ab for sa	mple(s):	02-03	Batch: V	VG1562202-1			
Chloride	ND		mg/l	0.500	0.083	1		10/22/21 17:44	44,300.0	AT
Sulfate	ND		mg/l	1.00	0.454	1	-	10/22/21 17:44	44,300.0	AT
Anions by Ion Chromato	graphy - Westbo	rough L	ab for sa	mple(s):	01-03	Batch: V	VG1562483-1			
Chloride	ND		mg/l	0.500	0.083	1		10/24/21 11:54	44,300.0	SH
Sulfate	ND		mg/l	1.00	0.454	1	-	10/24/21 11:54	44,300.0	SH
General Chemistry - We	stborough Lab for	or samp	ole(s): 01-	03 Bat	ch: WG	61563245-	1			
Alkalinity, Total	ND		mg CaCO3/L	2.00	NA	1	-	10/26/21 11:35	121,2320B	JB

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2155960 Report Date: 10/27/21

_	LCS		LCSD		%Recovery				
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Asso	ociated sample(s):	01-03	Batch: WG1558	366-2					
Nitrogen, Nitrate	94		-		90-110	-			
General Chemistry - Westborough Lab Ass	ociated sample(s):	01-03	Batch: WG15589	961-2					
Solids, Total Dissolved	89		-		80-120	-			
General Chemistry - Westborough Lab Ass	ociated sample(s):	01-03	Batch: WG15607	764-2					
Total Organic Carbon	98		-		90-110	-			
General Chemistry - Westborough Lab Ass	ociated sample(s):	01-03	Batch: WG1562	189-2					
Nitrogen, Ammonia	96		-		80-120	-		20	
Anions by Ion Chromatography - Westborou	gh Lab Associate	d samp	le(s): 02-03 Bate	ch: WG156	2202-2				
Chloride	99		-		90-110	-			
Sulfate	97		-		90-110	-			
Anions by Ion Chromatography - Westborou	gh Lab Associate	d samp	le(s): 01-03 Bato	ch: WG156	2483-2				
Chloride	98		-		90-110	-			
Sulfate	98		-		90-110	-			
General Chemistry - Westborough Lab Asso	ociated sample(s):	01-03	Batch: WG15632	245-2					
Alkalinity, Total	103		-		90-110	-		10	

Project Name:

Project Number:

27816

KITTERY MUNICIPAL LANDFILL

90-110

-

Matrix Spike Analysis

-

-

Project Name:	KITTERY MUNICI	PAL LANDF	FILL	Ba	tch Qua	ality Cont	rol	l	_ab Number	:	L215	5960
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - W	estborough Lab Asso	ciated sam	ole(s): 01-0	3 QC Batch I	D: WG1	562189-4	QC Sample:	L2155	960-01 Clie	ent ID:	B110	

Nitrogen, Ammonia	ND	4	3.41	85	· ·	-	80-120	-	20
Anions by Ion Chromatography	- Westborougl	h Lab Asso	ciated sample	e(s): 01-03	QC Batch ID: WG1562	483-3	QC Sample: L215596	60-01	Client ID: B110
Chloride	54.0	40	91.1	93	· ·	-	90-110	-	18

92

20

Sulfate

159.

80

232

Lab Duplicate Analysis Batch Quality Control

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:27816

 Lab Number:
 L2155960

 Report Date:
 10/27/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sa	mple(s): 01-03 QC Batch I	D: WG1562189-3	QC Sample:	L2155960-01	Client ID: E	3110
Nitrogen, Ammonia	ND	0.066J	mg/l	NC		20
Anions by Ion Chromatography - Westborough Lab As	ssociated sample(s): 01-03	QC Batch ID: WG	1562483-4 (QC Sample: L	2155960-01	Client ID: B110
Chloride	54.0	53.8	mg/l	0		18
Sulfate	159.	158	mg/l	1		20

Project Name: KITTERY MUNICIPAL LANDFILL *Project Number:* 27816

A2-ME-537ISOTOPE-28+(14)

A2-ME-537ISOTOPE-28+(14)

AS-TI(180), MN-TI(180), MG-TI(180), FE-

TI(180),NA-TI(180),K-TI(180),CA-TI(180)

SO4-300(28), CL-300(28), TDS-2540(7), NO3-

ALK-T-2320(14)

NH3-4500(28)

353(2)

Sample Receipt and Container Information

Were project specific reporting limits specified?

Plastic 250ml unpreserved

Plastic 250ml unpreserved

Plastic 250ml HNO3 preserved

Plastic 500ml H2SO4 preserved

Plastic 500ml unpreserved

Plastic 250ml unpreserved/No Headspace

YES

А

А

А

А

А

А

NA

NA

NA

<2

<2

7

<2

<2

7

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2155960-01A	Vial HCI preserved	А	NA		3.0	Y	Absent		ME-8260(14)
L2155960-01B	Vial HCI preserved	А	NA		3.0	Y	Absent		ME-8260(14)
L2155960-01C	Vial HCI preserved	А	NA		3.0	Y	Absent		ME-8260(14)
L2155960-01D	Vial H2SO4 preserved	А	NA		3.0	Y	Absent		TOC-5310(28)
L2155960-01E	Vial H2SO4 preserved	А	NA		3.0	Y	Absent		TOC-5310(28)
L2155960-01F	Plastic 250ml unpreserved	А	NA		3.0	Y	Absent		A2-ME-537ISOTOPE-28+(14)
L2155960-01G	Plastic 250ml unpreserved	А	NA		3.0	Y	Absent		A2-ME-537ISOTOPE-28+(14)
L2155960-01H	Plastic 250ml unpreserved/No Headspace	А	NA		3.0	Y	Absent		ALK-T-2320(14)
L2155960-01I	Plastic 250ml HNO3 preserved	А	<2	<2	3.0	Y	Absent		AS-TI(180),MN-TI(180),MG-TI(180),FE- TI(180),K-TI(180),NA-TI(180),CA-TI(180)
L2155960-01J	Plastic 500ml H2SO4 preserved	А	<2	<2	3.0	Y	Absent		NH3-4500(28)
L2155960-01K	Plastic 500ml unpreserved	А	7	7	3.0	Y	Absent		SO4-300(28),CL-300(28),TDS-2540(7),NO3- 353(2)
L2155960-02A	Vial HCI preserved	А	NA		3.0	Y	Absent		ME-8260(14)
L2155960-02B	Vial HCI preserved	А	NA		3.0	Y	Absent		ME-8260(14)
L2155960-02C	Vial HCI preserved	А	NA		3.0	Y	Absent		ME-8260(14)
L2155960-02D	Vial H2SO4 preserved	А	NA		3.0	Y	Absent		TOC-5310(28)
L2155960-02E	Vial H2SO4 preserved	А	NA		3.0	Y	Absent		TOC-5310(28)

L2155960-02F

L2155960-02G

L2155960-02H

L2155960-02I

L2155960-02J

L2155960-02K

3.0

3.0

3.0

3.0

3.0

3.0

Υ

Υ

Υ

Υ

Υ

Υ

Absent

Absent

Absent

Absent

Absent

Absent

Project Name: KITTERY MUNICIPAL LANDFILL Project Number: 27816

Container Information					Final	Temp			Frozen	
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2155960-03A	Vial HCI preserved	А	NA		3.0	Y	Absent		ME-8260(14)
	L2155960-03B	Vial HCl preserved	А	NA		3.0	Y	Absent		ME-8260(14)
	L2155960-03C	Vial HCl preserved	А	NA		3.0	Y	Absent		ME-8260(14)
	L2155960-03D	Vial H2SO4 preserved	А	NA		3.0	Y	Absent		TOC-5310(28)
	L2155960-03E	Vial H2SO4 preserved	А	NA		3.0	Y	Absent		TOC-5310(28)
	L2155960-03F	Plastic 250ml unpreserved	А	NA		3.0	Y	Absent		A2-ME-537ISOTOPE-28+(14)
	L2155960-03G	Plastic 250ml unpreserved	А	NA		3.0	Y	Absent		A2-ME-537ISOTOPE-28+(14)
	L2155960-03H	Plastic 250ml unpreserved/No Headspace	А	NA		3.0	Y	Absent		ALK-T-2320(14)
	L2155960-03I	Plastic 250ml HNO3 preserved	А	<2	<2	3.0	Y	Absent		AS-TI(180),MG-TI(180),MN-TI(180),FE- TI(180),NA-TI(180),CA-TI(180),K-TI(180)
	L2155960-03J	Plastic 500ml H2SO4 preserved	А	<2	<2	3.0	Y	Absent		NH3-4500(28)
	L2155960-03K	Plastic 500ml unpreserved	А	7	7	3.0	Y	Absent		SO4-300(28),CL-300(28),NO3-353(2),TDS- 2540(7)
	L2155960-04A	Plastic 250ml unpreserved	А	NA		3.0	Y	Absent		A2-ME-537ISOTOPE-28+(14)

Container Comments

L2155960-02A	Collection date on container: 10/15/21
L2155960-02B	Collection date on container: 10/15/21
L2155960-02C	Collection date on container: 10/15/21
L2155960-02D	Collection date on container: 10/15/21
L2155960-02E	Collection date on container: 10/15/21
L2155960-02H	Collection date on container: 10/15/21
L2155960-02J	Collection date on container: 10/15/21
L2155960-02K	Collection date on container: 10/15/21

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 27816

 Serial_No:10272119:21

 Lab Number:
 L2155960

 Report Date:
 10/27/21

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PENA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroneptanoic Acid	РЕНРА	375-85-9
Perfluoronexanoic Acid		307-24-4
	PFPEA	2706-90-3
Peniuorobutanoic Acid	РЕВА	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H 1H 2H 2H-Perfluorododecanesulfonic Acid	10.2ETS	120226 60 0
1H 1H 2H 2H-Perfluorodecanesulfonic Acid	8-2FTS	20108 24 4
1H 1H 2H 2H-Perfluorooctanesulfonic Acid	6.2FTS	27610 07 2
1H 1H 2H 2H-Perfluorobeyapesulfonic Acid	0.2FTS	27019-97-2
	4.21 13	13/124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYELLIOROALKYL ETHER CARBOXYLIC ACIDS		
2 3 3 3-Tetrafluoro-2-[1 1 2 2 3 3 3-Hentafluoropropovy]-Propanoic Acid		12252 12 6
4.8-Dioya-3b-Derfluorononanoio Acid		13232-13-0
	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Pertluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonatluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 27816

Lab Number: L2155960

Report Date: 10/27/21

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 27816 Lab Number: L2155960

Report Date: 10/27/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- М - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 27816

Lab Number: L2155960

Report Date: 10/27/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: KITTERY MUNICIPAL LANDFILL Project Number: 27816
 Lab Number:
 L2155960

 Report Date:
 10/27/21

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN OF CUS	TODY	PAC	GE	1	_OF	1	-	Date Re	ec'd in L		31	21				REMOT	9
8 Walkup Drive Vestboro, MA 01581 08)-898-9220	320 Forbes Blvd Mansfield, MA 02048 Tel: Tel: (508)-822-9300	Project Inf Sile Name:	ormation Kitlery Mun	icipal Landf	611				Report EMA		tion - DEx	Data D	eliverat	oles	120	ing su	Billing Information Same PO #: as Client info	n
lient Information		Site Locatio	n: MacKenz	e Rd Kitten	y, ME				-									
ent:Maine DEP		EGAD Num	ber - 27816															
ntact Name:Matthew	/ Young	Project Man	ager: Matthe	ew Young														
y: Augusta		Copies to:	mark	4.Wa	arruf	fam	aine.	toJ										
te:Maine	Zip Code:04333-0017	ALPHA Quo	te #:REM01		-01)	1.									
me: 207-215-7841		Turn-Aroun	nd Time				124149	1										
ail:matthew.r.young	@maine.gov	X standard D Rush (only continned if pre-approved) Date Due:					ANALYSIS											
iditional Project Infor	nation: monitoring well and pore wate	r well sample	es. REM00	186					(adjosi-1237-isotpe)	(52)		st					SAMPLE INFO Filtration Field Lab to do Preservation	# BOTTLES
ALPHA Lab ID (Lab Use Only)	Sample Point Name	Sample	Collection	Sample Matrix/ Type	Sample Location	Sample Collection Method	Treatment Status	PID Result	- ALPHA FI	ANE (RSK-	8260	Landfil Li					Lab to do	TOTAL
		Date	Time						PFAS	METH	VOC	Short			_	_	Comments	
	BIOIA			GW		LFS	N		-x-	-	×	*	*)			_		
0/0 1	BIOIB			GW		LES	N	-	-x-	-	x	*	-		-			_
10-01	BH02 0	10/13	1125	PW	PU	PW8*	N	-	×	-	×	x			-	-	Caller	-
00	B-109	10/13	1155	GW	PU	LES	NW 1		×	-	x	x			-		owitt	2
05	KITTERY PW-	10/13	1005	AO	0	Der.	NA	-	×	-	×	×	-				PO/PWS	
- 04		10/13	1200	<u> </u>	0	D		-	×	-	-	-	-		-+			_
5000								+	-	-	+	+	-		+			
a stander		-									1							
104007																	All	
wher Type // // auto // // ther Glass // // lass // // lass // // be // // ther // ther // ther // hass // // // // // // // // // //	Vraienprative version: 0+0ther sHRD: sHRD: sHR0304 sHR0H sHR0H sHR0H sHR0H sHR0H sHR0H sHR0H sHR0H sHR0H sHR0H sHR0H sHR0H sHR0H sHR0H sh	Relaquishe	Dilan	reservative	ype: ne: <u>(0)</u> 10 (13)	13 ZI	51.55		P A Receiv	G B red By:	A B M(20	Lot	oby	10		All samples submitted are su to Alpha's Terms Conditions	bject s and s.

Quantitation Report (QT Reviewed) Data Path : I:\VOLATILES\VOA108\2021\211024A\ Data File : V08211024A05.d Acq On : 24 Oct 2021 9:11 am Operator : VOA108:PD Sample : WG1562638-5,31,10,10 Misc : WG1562638, ICAL18356 ALS Vial : 4 Sample Multiplier: 1 Quant Time: Oct 24 09:32:58 2021 Quant Method : I:\VOLATILES\VOA108\2021\211024A\V108 211004N 8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 06 10:31:08 2021 Response via : Initial Calibration Sub List : 8260-Curve-IM-2CEVE - Megamix plus Diox-Iodomethane•

V108 211004N 8260.m Mon Oct 25 09:54:08 2021

Quantitation Report (QT Reviewed) Data Path : I:\VOLATILES\VOA108\2021\211024A\ Data File : V08211024A11.d Acq On : 24 Oct 2021 11:13 am Operator : VOA108:NLK Sample : L2155960-01, 31, 10, 10, , A, PRI Misc : WG1562638, ICAL18356 ALS Vial : 12 Sample Multiplier: 1 Quant Time: Oct 25 09:27:48 2021 Quant Method : I:\VOLATILES\VOA108\2021\211024A\V108 211004N 8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 06 10:31:08 2021 Response via : Initial Calibration Sub List : 8260-Curve-IM-2CEVE - Megamix plus Diox-Iodomethane•

V108 211004N 8260.m Mon Oct 25 09:55:00 2021

Quantitation Report (QT Reviewed) Data Path : I:\VOLATILES\VOA108\2021\211024A\ Data File : V08211024A12.d Acq On : 24 Oct 2021 11:33 am Operator : VOA108:NLK L2155960-02,31,10,10,,A,PRI Sample : Misc : WG1562638, ICAL18356 ALS Vial : 13 Sample Multiplier: 1 Quant Time: Oct 25 09:28:56 2021 Quant Method : I:\VOLATILES\VOA108\2021\211024A\V108 211004N 8260.m : VOLATILES BY GC/MS Quant Title QLast Update : Wed Oct 06 10:31:08 2021 Response via : Initial Calibration : 8260-Curve-IM-2CEVE - Megamix plus Diox-Iodomethane• Sub List

V108 211004N 8260.m Mon Oct 25 09:55:08 2021

Quantitation Report (QT Reviewed) Data Path : I:\VOLATILES\VOA108\2021\211024A\ Data File : V08211024A13.d Acq On : 24 Oct 2021 11:54 am Operator : VOA108:NLK : L2155960-03, 31, 10, 10, , A, PRI Sample Misc : WG1562638, ICAL18356 ALS Vial : 14 Sample Multiplier: 1 Quant Time: Oct 25 09:29:37 2021 Quant Method : I:\VOLATILES\VOA108\2021\211024A\V108 211004N 8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 06 10:31:08 2021 Response via : Initial Calibration Sub List : 8260-Curve-IM-2CEVE - Megamix plus Diox-Iodomethane•

V108 211004N 8260.m Mon Oct 25 09:55:16 2021

ANALYTICAL REPORT

Lab Number:	L2154155
Client:	Maine DEP-Div. of Technical Services 17 State House Station Augusta, ME 04333
ATTN: Phone:	Matt Young (207) 557-5762
Project Name:	KITTERY MUNICIPAL LANDFILL
Project Number: Report Date:	22816 10/19/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:22816

 Lab Number:
 L2154155

 Report Date:
 10/19/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2154155-01	B101A	WATER	KITTERY, ME	10/05/21 11:40	10/05/21
L2154155-02	B101B	WATER	KITTERY, ME	10/05/21 12:00	10/05/21
L2154155-03	FIELD REAGENT BLANK	WATER	KITTERY, ME	10/05/21 14:00	10/05/21

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:22816

 Lab Number:
 L2154155

 Report Date:
 10/19/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:22816

 Lab Number:
 L2154155

 Report Date:
 10/19/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

Volatile Organics

The WG1559537-3/-4 LCS/LCSD recoveries, associated with L2154155-01 and -02, are above the individual acceptance criteria for acetone (LCSD at 150%), 2-butanone (LCSD at 140%), 2-hexanone (140%/150%), tetrahydrofuran (LCSD at 160%), and tert-butyl alcohol (150%/158%), but within the overall method allowances. The results of the associated samples are reported; however, all positive detects for these compounds are considered to have a potentially high bias.

The WG1559537-3/-4 LCS/LCSD RPD, associated with L2154155-01 and -02, is above the acceptance criteria for tetrahydrofuran (29%).

Perfluorinated Alkyl Acids by Isotope Dilution

L2154155-02 and WG1557386-4: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 10/19/21

ORGANICS

VOLATILES

		Serial_No:10			
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155		
Project Number:	22816	Report Date:	10/19/21		
	SAMPLE RESUL	TS			
Lab ID:	L2154155-01	Date Collected:	10/05/21 11:40		
Client ID:	B101A	Date Received:	10/05/21		
Sample Location:	KITTERY, ME	Field Prep:	Not Specified		
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	10/15/21 20:29				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0	0.68	1
1,1-Dichloroethane	ND		ug/l	0.75	0.21	1
Chloroform	ND		ug/l	0.75	0.22	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.18	1
Trichlorofluoromethane	ND		ug/l	1.0	0.16	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
1,1-Dichloropropene	ND		ug/l	1.0	0.24	1
Bromoform	ND		ug/l	1.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	0.75	0.20	1
Ethylbenzene	ND		ug/l	0.50	0.17	1
Chloromethane	ND		ug/l	2.0	0.20	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	0.20	0.07	1
Chloroethane	ND		ug/l	1.0	0.13	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.16	1
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	1.0	0.18	1

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

SAMPLE RESULTS

Lab ID: L2154155-01 Client ID: B101A Sample Location: KITTERY, ME

 Report Date:
 10/19/21

 Date Collected:
 10/05/21 11

Serial_No:10192117:46

Date Received: Field Prep:

Lab Number:

10/05/21 11:40 10/05/21 Not Specified

L2154155

Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene ND ug/l 1.0 0.19 1 1,4-Dichlorobenzene ND ug/l 1.0 0.19 1 Methyl tert butyl ether ND ug/l 1.0 0.17 1 p/m-Xylene ND ug/l 1.0 0.33 1 o-Xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1
1,3-Dichlorobenzene ND ug/l 1.0 0.19 1 1,4-Dichlorobenzene ND ug/l 1.0 0.19 1 Methyl tert butyl ether ND ug/l 1.0 0.17 1 p/m-Xylene ND ug/l 1.0 0.33 1 o-Xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1
ND ug/l 1.0 0.19 1 1,4-Dichlorobenzene ND ug/l 1.0 0.19 1 Methyl tert butyl ether ND ug/l 1.0 0.17 1 p/m-Xylene ND ug/l 1.0 0.33 1 o-Xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1
ND ug/l 1.0 0.19 1 Methyl tert butyl ether ND ug/l 1.0 0.17 1 p/m-Xylene ND ug/l 1.0 0.33 1 o-Xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1
Indextyneter ND ug/l 1.0 0.17 1 p/m-Xylene ND ug/l 1.0 0.33 1 o-Xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1
o-Xylene ND ug/l 1.0 0.33 1 o-Xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1
o-xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1
Xylenes, I otal ND ug/ 1.0 0.33 1
·
cis-1,2-Dichloroethene ND ug/l 0.50 0.19 1
Dibromomethane ND ug/l 1.0 0.36 1
1,2,3-Trichloropropane ND ug/l 1.0 0.18 1
Styrene ND ug/l 1.0 0.36 1
Dichlorodifluoromethane ND ug/l 2.0 0.24 1
Acetone ND ug/l 5.0 1.5 1
Carbon disulfide ND ug/l 1.0 0.30 1
2-Butanone ND ug/l 5.0 1.9 1
4-Methyl-2-pentanone ND ug/l 5.0 0.42 1
2-Hexanone ND ug/l 5.0 0.52 1
Bromochloromethane ND ug/l 1.0 0.15 1
Tetrahydrofuran 0.97 J ug/l 2.0 0.52 1
2,2-Dichloropropane ND ug/l 1.0 0.20 1
1,2-Dibromoethane ND ug/l 1.0 0.19 1
1,3-Dichloropropane ND ug/l 1.0 0.21 1
1,1,1,2-Tetrachloroethane ND ug/I 0.50 0.16 1
Bromobenzene ND ug/l 1.0 0.15 1
n-Butylbenzene ND ug/l 0.50 0.19 1
sec-Butylbenzene ND ug/l 0.50 0.18 1
tert-Butylbenzene ND ug/l 1.0 0.20 1
o-Chlorotoluene ND ug/l 1.0 0.22 1
p-Chlorotoluene ND ug/l 1.0 0.18 1
1,2-Dibromo-3-chloropropane ND ug/l 1.0 0.35 1
Hexachlorobutadiene ND ug/I 0.50 0.22 1
Isopropylbenzene ND ug/I 0.50 0.19 1
p-IsopropyItoluene ND ug/I 0.50 0.19 1
Naphthalene ND ug/l 1.0 0.22 1
n-Propylbenzene ND ug/l 0.50 0.17 1
1,2,3-Trichlorobenzene ND ug/l 1.0 0.23 1
1,2,4-Trichlorobenzene ND ug/l 1.0 0.22 1
1,3,5-Trimethylbenzene ND ug/l 1.0 0.22 1

		Serial_No:10192117:46			
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155		
Project Number:	22816	Report Date:	10/19/21		
	SAMPLE RESULTS				
Lab ID:	L2154155-01	Date Collected:	10/05/21 11:40		
Client ID:	B101A	Date Received:	10/05/21		
Sample Location:	KITTERY, ME	Field Prep:	Not Specified		

Result	Qualifier	Units	RL	MDL	Dilution Factor
_ab					
ND		ug/l	1.0	0.14	1
ND		ug/l	1.0	0.19	1
ND		ug/l	1.0	0.16	1
ND		ug/l	1.0	0.42	1
ND		ug/l	10	1.4	1
ND		ug/l	1.0	0.18	1
ND		ug/l	1.0	0.28	1
	Result AD ND ND ND ND ND ND ND ND ND	ResultQualifierADNDNDNDNDNDNDNDNDNDNDNDND	ResultQualifierUnitsabug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/l	ResultQualifierUnitsRLabug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0	Result Qualifier Units RL MDL .ab .ug/l 1.0 0.14 ND ug/l 1.0 0.19 ND ug/l 1.0 0.19 ND ug/l 1.0 0.16 ND ug/l 1.0 0.42 ND ug/l 1.0 0.43

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	101	70-130	

		Serial_No	:10192117:46
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155
Project Number:	22816	Report Date:	10/19/21
	SAMPLE RE	ESULTS	
Lab ID:	L2154155-02	Date Collected:	10/05/21 12:00
Client ID:	B101B	Date Received:	10/05/21
Sample Location:	KITTERY, ME	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/15/21 20:52		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0	0.68	1
1,1-Dichloroethane	ND		ug/l	0.75	0.21	1
Chloroform	ND		ug/l	0.75	0.22	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.18	1
Trichlorofluoromethane	ND		ug/l	1.0	0.16	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
1,1-Dichloropropene	ND		ug/l	1.0	0.24	1
Bromoform	ND		ug/l	1.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	0.75	0.20	1
Ethylbenzene	ND		ug/l	0.50	0.17	1
Chloromethane	ND		ug/l	2.0	0.20	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	0.20	0.07	1
Chloroethane	ND		ug/l	1.0	0.13	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.16	1
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	1.0	0.18	1

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

SAMPLE RESULTS

Lab ID:L2154155-02Client ID:B101BSample Location:KITTERY, ME

Date Collected: 10/05, Date Received: 10/05,

Serial_No:10192117:46

Field Prep:

Lab Number:

Report Date:

10/05/21 12:00 10/05/21 Not Specified

L2154155

10/19/21

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS	- Westborough Lab					
1,3-Dichlorobenzene	ND	ug/l	1.0	0.19	1	
1,4-Dichlorobenzene	ND	ug/l	1.0	0.19	1	
Methyl tert butyl ether	ND	ug/l	1.0	0.17	1	
p/m-Xylene	ND	ug/l	1.0	0.33	1	
o-Xylene	ND	ug/l	1.0	0.39	1	
Xylenes, Total	ND	ug/l	1.0	0.33	1	
cis-1,2-Dichloroethene	ND	ug/l	0.50	0.19	1	
Dibromomethane	ND	ug/l	1.0	0.36	1	
1,2,3-Trichloropropane	ND	ug/l	1.0	0.18	1	
Styrene	ND	ug/l	1.0	0.36	1	
Dichlorodifluoromethane	ND	ug/l	2.0	0.24	1	
Acetone	ND	ug/l	5.0	1.5	1	
Carbon disulfide	ND	ug/l	1.0	0.30	1	
2-Butanone	ND	ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND	ug/l	5.0	0.42	1	
2-Hexanone	ND	ug/l	5.0	0.52	1	
Bromochloromethane	ND	ug/l	1.0	0.15	1	
Tetrahydrofuran	ND	ug/l	2.0	0.52	1	
2,2-Dichloropropane	ND	ug/l	1.0	0.20	1	
1,2-Dibromoethane	ND	ug/l	1.0	0.19	1	
1,3-Dichloropropane	ND	ug/l	1.0	0.21	1	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	0.16	1	
Bromobenzene	ND	ug/l	1.0	0.15	1	
n-Butylbenzene	ND	ug/l	0.50	0.19	1	
sec-Butylbenzene	ND	ug/l	0.50	0.18	1	
tert-Butylbenzene	ND	ug/l	1.0	0.20	1	
o-Chlorotoluene	ND	ug/l	1.0	0.22	1	
p-Chlorotoluene	ND	ug/l	1.0	0.18	1	
1,2-Dibromo-3-chloropropane	ND	ug/l	1.0	0.35	1	
Hexachlorobutadiene	ND	ug/l	0.50	0.22	1	
Isopropylbenzene	ND	ug/l	0.50	0.19	1	
p-Isopropyltoluene	ND	ug/l	0.50	0.19	1	
Naphthalene	ND	ug/l	1.0	0.22	1	
n-Propylbenzene	ND	ug/l	0.50	0.17	1	
1,2,3-Trichlorobenzene	ND	ug/l	1.0	0.23	1	
1,2,4-Trichlorobenzene	ND	ug/l	1.0	0.22	1	
1,3,5-Trimethylbenzene	ND	ug/l	1.0	0.22	1	

		Serial_No	:10192117:46
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155
Project Number:	22816	Report Date:	10/19/21
	SAMPLE RESULTS		
Lab ID:	L2154155-02	Date Collected:	10/05/21 12:00
Client ID:	B101B	Date Received:	10/05/21
Sample Location:	KITTERY, ME	Field Prep:	Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor
_ab					
ND		ug/l	1.0	0.14	1
ND		ug/l	1.0	0.19	1
ND		ug/l	1.0	0.16	1
ND		ug/l	1.0	0.42	1
ND		ug/l	10	1.4	1
ND		ug/l	1.0	0.18	1
ND		ug/l	1.0	0.28	1
	Result AD ND ND ND ND ND ND ND ND ND	ResultQualifierADNDNDNDNDNDNDNDNDNDNDNDND	ResultQualifierUnitsabug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/l	ResultQualifierUnitsRLabug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0NDug/l1.0	Result Qualifier Units RL MDL .ab .ug/l 1.0 0.14 ND ug/l 1.0 0.19 ND ug/l 1.0 0.19 ND ug/l 1.0 0.16 ND ug/l 1.0 0.42 ND ug/l 1.0 0.43

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	101	70-130	

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Lab Number: L2154155 **Report Date:** 10/19/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/15/21 19:41 Analyst: LAC

Parameter	Result	Qualifier Unit	s RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab	o for sample(s):	01-02 Batch:	WG1559537-5	
Methylene chloride	ND	ug/	1 3.0	0.68	
1,1-Dichloroethane	ND	ug/	1 0.75	0.21	
Chloroform	ND	ug/	1 0.75	0.22	
Carbon tetrachloride	ND	ug/	1 0.50	0.13	
1,2-Dichloropropane	ND	ug/	1 1.0	0.14	
Dibromochloromethane	ND	ug/	íl 0.50	0.15	
1,1,2-Trichloroethane	ND	ug/	1 0.75	0.14	
Tetrachloroethene	ND	ug/	íl 0.50	0.18	
Chlorobenzene	ND	ug/	íl 0.50	0.18	
Trichlorofluoromethane	ND	ug/	Ί 1.0	0.16	
1,2-Dichloroethane	ND	ug/	íl 0.50	0.13	
1,1,1-Trichloroethane	ND	ug/	íl 0.50	0.16	
Bromodichloromethane	ND	ug/	íl 0.50	0.19	
1,1-Dichloropropene	ND	ug/	Ί 1.0	0.24	
Bromoform	ND	ug/	Ί 1.0	0.25	
1,1,2,2-Tetrachloroethane	ND	ug/	íl 0.50	0.17	
Benzene	ND	ug/	1 0.50	0.16	
Toluene	ND	ug/	1 0.75	0.20	
Ethylbenzene	ND	ug/	íl 0.50	0.17	
Chloromethane	ND	ug/	1 2.0	0.20	
Bromomethane	ND	ug/	Ί 1.0	0.26	
Vinyl chloride	ND	ug/	1 0.20	0.07	
Chloroethane	ND	ug/	Ί 1.0	0.13	
1,1-Dichloroethene	ND	ug/	íl 0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/	1 0.75	0.16	
1,2-Dichloroethene, Total	ND	ug/	íl 0.50	0.16	
Trichloroethene	ND	ug/	íl 0.50	0.18	
1,2-Dichlorobenzene	ND	ug/	Ί 1.0	0.18	
1,3-Dichlorobenzene	ND	ug/	Ί 1.0	0.19	

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Lab Number: L2154155 **Report Date:** 10/19/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/15/21 19:41 Analyst: LAC

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS ·	· Westborough Lab	for sample	e(s):	01-02	Batch:	WG1559537-5	
1,4-Dichlorobenzene	ND		ug/l		1.0	0.19	
Methyl tert butyl ether	ND		ug/l		1.0	0.17	
p/m-Xylene	ND		ug/l		1.0	0.33	
o-Xylene	ND		ug/l		1.0	0.39	
Xylenes, Total	ND		ug/l		1.0	0.33	
cis-1,2-Dichloroethene	ND		ug/l		0.50	0.19	
Dibromomethane	ND		ug/l		1.0	0.36	
1,2,3-Trichloropropane	ND		ug/l		1.0	0.18	
Styrene	ND		ug/l		1.0	0.36	
Dichlorodifluoromethane	ND		ug/l		2.0	0.24	
Acetone	ND		ug/l		5.0	1.5	
Carbon disulfide	ND		ug/l		1.0	0.30	
2-Butanone	ND		ug/l		5.0	1.9	
4-Methyl-2-pentanone	ND		ug/l		5.0	0.42	
2-Hexanone	ND		ug/l		5.0	0.52	
Bromochloromethane	ND		ug/l		1.0	0.15	
Tetrahydrofuran	ND		ug/l		2.0	0.52	
2,2-Dichloropropane	ND		ug/l		1.0	0.20	
1,2-Dibromoethane	ND		ug/l		1.0	0.19	
1,3-Dichloropropane	ND		ug/l		1.0	0.21	
1,1,1,2-Tetrachloroethane	ND		ug/l		0.50	0.16	
Bromobenzene	ND		ug/l		1.0	0.15	
n-Butylbenzene	ND		ug/l		0.50	0.19	
sec-Butylbenzene	ND		ug/l		0.50	0.18	
tert-Butylbenzene	ND		ug/l		1.0	0.20	
o-Chlorotoluene	ND		ug/l		1.0	0.22	
p-Chlorotoluene	ND		ug/l		1.0	0.18	
1,2-Dibromo-3-chloropropane	ND		ug/l		1.0	0.35	
Hexachlorobutadiene	ND		ug/l		0.50	0.22	

L2154155

10/19/21

Lab Number:

Report Date:

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: LAC

10/15/21 19:41

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS - West	borough Lab	for sample(s):	01-02 Batch	n: WG1559537-5	
Isopropylbenzene	ND	ug/	0.50	0.19	
p-Isopropyltoluene	ND	ug/	0.50	0.19	
Naphthalene	ND	ug/	1.0	0.22	
n-Propylbenzene	ND	ug/	0.50	0.17	
1,2,3-Trichlorobenzene	ND	ug/	1.0	0.23	
1,2,4-Trichlorobenzene	ND	ug/	1.0	0.22	
1,3,5-Trimethylbenzene	ND	ug/	1.0	0.22	
1,3,5-Trichlorobenzene	ND	ug/	1.0	0.14	
1,2,4-Trimethylbenzene	ND	ug/	1.0	0.19	
Ethyl ether	ND	ug/	1.0	0.16	
Diisopropyl Ether	ND	ug/	1.0	0.42	
Tert-Butyl Alcohol	ND	ug/	10	1.4	
Ethyl-Tert-Butyl-Ether	ND	ug/	1.0	0.18	
Tertiary-Amyl Methyl Ether	ND	ug/	1.0	0.28	

		l l	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	101		70-130	

Project Name: KITTERY MUNICIPAL LANDFILL Project Number: 22816

Report Date: 10/19/21

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	' Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-02 Batch:	WG1559537-3	WG1559537-4				
Methylene chloride	97		97		70-130	0		20	
1,1-Dichloroethane	100		100		70-130	0		20	
Chloroform	100		100		70-130	0		20	
Carbon tetrachloride	94		95		63-132	1		20	
1,2-Dichloropropane	100		110		70-130	10		20	
Dibromochloromethane	96		99		63-130	3		20	
1,1,2-Trichloroethane	100		110		70-130	10		20	
Tetrachloroethene	100		100		70-130	0		20	
Chlorobenzene	100		100		75-130	0		25	
Trichlorofluoromethane	110		110		62-150	0		20	
1,2-Dichloroethane	110		110		70-130	0		20	
1,1,1-Trichloroethane	100		100		67-130	0		20	
Bromodichloromethane	94		94		67-130	0		20	
1,1-Dichloropropene	100		100		70-130	0		20	
Bromoform	89		94		54-136	5		20	
1,1,2,2-Tetrachloroethane	100		110		67-130	10		20	
Benzene	100		100		70-130	0		25	
Toluene	100		100		70-130	0		25	
Ethylbenzene	100		100		70-130	0		20	
Chloromethane	95		94		64-130	1		20	
Bromomethane	80		83		39-139	4		20	
Vinyl chloride	98		98		55-140	0		20	
Chloroethane	110		110		55-138	0		20	

Project Number: 22816 Lab Number: L2154155 10/19/21

Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westbo	rough Lab Associated	sample(s):	01-02 Batch:	WG1559537-3	WG1559537-4				
1,1-Dichloroethene	100		100		61-145	0		25	
trans-1,2-Dichloroethene	98		98		70-130	0		20	
Trichloroethene	110		110		70-130	0		25	
1,2-Dichlorobenzene	100		100		70-130	0		20	
1,3-Dichlorobenzene	100		100		70-130	0		20	
1,4-Dichlorobenzene	100		100		70-130	0		20	
Methyl tert butyl ether	110		120		63-130	9		20	
p/m-Xylene	100		100		70-130	0		20	
o-Xylene	100		100		70-130	0		20	
cis-1,2-Dichloroethene	96		96		70-130	0		20	
Dibromomethane	100		110		70-130	10		20	
1,2,3-Trichloropropane	110		120		64-130	9		20	
Styrene	100		105		70-130	5		20	
Dichlorodifluoromethane	77		78		36-147	1		20	
Acetone	140		150	Q	58-148	7		20	
Carbon disulfide	99		99		51-130	0		20	
2-Butanone	130		140	Q	63-138	7		20	
4-Methyl-2-pentanone	120		120		59-130	0		20	
2-Hexanone	140	Q	150	Q	57-130	7		20	
Bromochloromethane	100		100		70-130	0		20	
Tetrahydrofuran	120		160	Q	58-130	29	Q	20	
2,2-Dichloropropane	96		95		63-133	1		20	
1,2-Dibromoethane	110		110		70-130	0		20	

Project Number: 22816 Lab Number: L2154155 10/19/21

Report Date:

Paramotor	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery	חפפ	Qual	RPD Limits	
i arameter	/incourcely	Quui	,	Quai	Linits		Quai	Linits	
Volatile Organics by GC/MS	- Westborough Lab Associated	d sample(s):	01-02 Batch:	WG1559537-3	WG1559537-4				
1,3-Dichloropropane	110		110		70-130	0		20	
1,1,1,2-Tetrachloroethane	96		96		64-130	0		20	
Bromobenzene	100		100		70-130	0		20	
n-Butylbenzene	110		110		53-136	0		20	
sec-Butylbenzene	110		100		70-130	10		20	
tert-Butylbenzene	100		100		70-130	0		20	
o-Chlorotoluene	100		100		70-130	0		20	
p-Chlorotoluene	100		100		70-130	0		20	
1,2-Dibromo-3-chloropropane	110		120		41-144	9		20	
Hexachlorobutadiene	100		100		63-130	0		20	
Isopropylbenzene	100		100		70-130	0		20	
p-lsopropyltoluene	100		100		70-130	0		20	
Naphthalene	110		120		70-130	9		20	
n-Propylbenzene	100		100		69-130	0		20	
1,2,3-Trichlorobenzene	110		110		70-130	0		20	
1,2,4-Trichlorobenzene	100		110		70-130	10		20	
1,3,5-Trimethylbenzene	99		100		64-130	1		20	
1,3,5-Trichlorobenzene	110		100		70-130	10		20	
1,2,4-Trimethylbenzene	100		100		70-130	0		20	
Ethyl ether	110		110		59-134	0		20	
Diisopropyl Ether	110		110		70-130	0		20	
Tert-Butyl Alcohol	150	Q	158	Q	70-130	5		20	
Ethyl-Tert-Butyl-Ether	110		110		70-130	0		20	

Project Name:	KITTERY MUNICIPAL LANDFILL
ejeet Hanner	

Project Number: 22816

 Lab Number:
 L2154155

 Report Date:
 10/19/21

	LCS		L	CSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%R	ecovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02	Batch:	WG1559537-3	WG1559537-4				
Tertiary-Amyl Methyl Ether	100			110		66-130	10		20	

	LCS	LCSD	Acceptance		
Surrogate	%Recovery Qua	%Recovery Qual	Criteria		
1,2-Dichloroethane-d4	111	111	70-130		
Toluene-d8	98	98	70-130		
4-Bromofluorobenzene	97	96	70-130		
Dibromofluoromethane	97	97	70-130		

SEMIVOLATILES

		Serial_No:	10192117:46
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155
Project Number:	22816	Report Date:	10/19/21
	SAMPLE RESULTS		
Lab ID:	L2154155-01	Date Collected:	10/05/21 11:40
Client ID:	B101A	Date Received:	10/05/21
Sample Location:	KITTERY, ME	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method:	ALPHA 23528
Analytical Method:	134,LCMSMS-ID	Extraction Date:	10/12/21 08:45
Analytical Date:	10/13/21 09:43		
Analyst:	HT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	8.35		ng/l	2.00	0.407	1
Perfluoropentanoic Acid (PFPeA)	13.3		ng/l	2.00	0.395	1
Perfluorobutanesulfonic Acid (PFBS)	6.91		ng/l	2.00	0.238	1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00	0.451	1
Perfluorohexanoic Acid (PFHxA)	18.3		ng/l	2.00	0.327	1
Perfluoropentanesulfonic Acid (PFPeS)	2.88		ng/l	2.00	0.245	1
Perfluoroheptanoic Acid (PFHpA)	11.1		ng/l	2.00	0.225	1
Perfluorohexanesulfonic Acid (PFHxS)	33.4		ng/l	2.00	0.375	1
Perfluorooctanoic Acid (PFOA)	33.2		ng/l	2.00	0.236	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	1.75	J	ng/l	2.00	1.33	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.962	J	ng/l	2.00	0.687	1
Perfluorononanoic Acid (PFNA)	3.19		ng/l	2.00	0.311	1
Perfluorooctanesulfonic Acid (PFOS)	38.6		ng/l	2.00	0.503	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.304	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00	1.21	1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	2.00	1.12	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00	0.647	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.260	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.978	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.579	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/l	2.00	0.803	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.371	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.327	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.248	1
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	49.9	22.7	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00	0.335	1
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.99	1.24	1

					Se	erial_No	:10192117:46
Project Name:	KITTERY MUNICIPA	L LANDFILL			Lab Num	nber:	L2154155
Project Number:	22816				Report D	ate:	10/19/21
		SAMPL	E RESULT	S			
Lab ID: Client ID: Sample Location:	L2154155-01 B101A KITTERY, ME				Date Colle Date Rece Field Prep	cted: eived: :	10/05/21 11:40 10/05/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alky	vl Acids by Isotope Dilu	tion - Mansfield	d Lab				
	,,						
Perfluorooctadecanoic A	cid (PFODA)	ND		ng/l	3.99	1.15	1
PFAS, Total (6)		119		ng/l	2.00	0.225	1
Surrogate				% Recovery	Qualifier	Acc	eptance Criteria
Perfluoro[13C4]Bu	utanoic Acid (MPFBA)			76			58-132
Perfluoro[13C5]Pe	entanoic Acid (M5PFPEA)			80			62-163
Perfluoro[2,3,4-13	C3]Butanesulfonic Acid (M3	PFBS)		74			70-131
1H,1H,2H,2H-Per	fluoro[1,2-13C2]Hexanesulfo	nic Acid (M2-4:2FT	TS)	139 12-142			12-142
Perfluoro[1,2,3,4,6	6-13C5]Hexanoic Acid (M5PI	FHxA)		65			57-129
Perfluoro[1,2,3,4-	13C4]Heptanoic Acid (M4PF	HpA)		74			60-129
Perfluoro[1,2,3-13	C3]Hexanesulfonic Acid (M3	PFHxS)		78			71-134
Perfluoro[13C8]O	ctanoic Acid (M8PFOA)			77			62-129
1H,1H,2H,2H-Per	fluoro[1,2-13C2]Octanesulfor	nic Acid (M2-6:2FT	S)	122			14-147
Perfluoro[13C9]No	onanoic Acid (M9PFNA)			78			59-139
Perfluoro[13C8]O	ctanesulfonic Acid (M8PFOS)		79			69-131
Perfluoro[1,2,3,4,5	5,6-13C6]Decanoic Acid (M6	PFDA)		74			62-124
1H,1H,2H,2H-Per	fluoro[1,2-13C2]Decanesulfo	nic Acid (M2-8:2FT	ſS)	91			10-162
N-Deuteriomethyl	perfluoro-1-octanesulfonamic	loacetic Acid (d3-N	IMeFOSAA)	53	24-116		
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)				75	55-137		
Perfluoro[13C8]O	ctanesulfonamide (M8FOSA)	1		15			10-112
N-Deuterioethylpe	erfluoro-1-octanesulfonamido	acetic Acid (d5-NE	tFOSAA)	60			27-126
Perfluoro[1,2-13C	2]Dodecanoic Acid (MPFDO	A)		73			48-131
Perfluoro[1,2-13C	2]Tetradecanoic Acid (M2PF	TEDA)		67			22-136
2,3,3,3-Tetrafluoro (M3HFPO-DA)	o-2-[1,1,2,2,3,3,3-Heptafluoro	propoxy]-13C3-Pro	opanoic Acid	81			10-165
Perfluoro[13C2]He	exadecanoic Acid (M2PFHxD	DA)		60			10-206

			Serial_No:	10192117:46
Project Name:	KITTERY MUNICIPAL LAN	DFILL	Lab Number:	L2154155
Project Number:	22816		Report Date:	10/19/21
		SAMPLE RESULTS		
Lab ID:	L2154155-02		Date Collected:	10/05/21 12:00
Client ID:	B101B		Date Received:	10/05/21
Sample Location:	KITTERY, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	ALPHA 23528
Analytical Method:	134,LCMSMS-ID		Extraction Date:	10/12/21 08:45
Analytical Date:	10/13/21 10:16			
Analyst:	HT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab										
Perfluorobutanoic Acid (PFBA)	9.50		ng/l	1.84	0.376	1				
Perfluoropentanoic Acid (PFPeA)	13.6		ng/l	1.84	0.365	1				
Perfluorobutanesulfonic Acid (PFBS)	5.23		ng/l	1.84	0.219	1				
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.84	0.416	1				
Perfluorohexanoic Acid (PFHxA)	18.1		ng/l	1.84	0.302	1				
Perfluoropentanesulfonic Acid (PFPeS)	2.32		ng/l	1.84	0.226	1				
Perfluoroheptanoic Acid (PFHpA)	11.6		ng/l	1.84	0.207	1				
Perfluorohexanesulfonic Acid (PFHxS)	23.0		ng/l	1.84	0.346	1				
Perfluorooctanoic Acid (PFOA)	34.2		ng/l	1.84	0.217	1				
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.84	1.23	1				
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.84	0.634	1				
Perfluorononanoic Acid (PFNA)	2.84		ng/l	1.84	0.287	1				
Perfluorooctanesulfonic Acid (PFOS)	25.4		ng/l	1.84	0.464	1				
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.84	0.280	1				
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.84	1.12	1				
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.84	1.03	1				
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.84	0.597	1				
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.84	0.239	1				
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.84	0.902	1				
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.84	0.534	1				
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.84	0.740	1				
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.84	0.342	1				
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.84	0.301	1				
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.84	0.228	1				
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	46.0	20.9	1				
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.84	0.309	1				
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.68	1.14	1				

					Se	erial_No	:10192117:46	
Project Name:	KITTERY MUNICIPA	L LANDFILL			Lab Num	ber:	L2154155	
Project Number:	22816				Report D	ate:	10/19/21	
		SAMP	LE RESULT	S				
Lab ID: Client ID: Sample Location:	L2154155-02 B101B KITTERY, ME				Date Colle Date Rece Field Prep	cted: ived: :	10/05/21 12:00 10/05/21 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alky	yl Acids by Isotope Dilu	tion - Mansfiel	d Lab					
		ND		"	0.00	4.00		
	cia (PFODA)	07.0		ng/l	3.68	1.06	1	
PFAS, Total (6)		97.0		ng/i	1.04	0.207	1	
Surrogate				% Recovery	Qualifier	Acc C	eptance Criteria	
Perfluoro[13C4]Bu	utanoic Acid (MPFBA)			84			58-132	
Perfluoro[13C5]Pe	entanoic Acid (M5PFPEA)			90			62-163	
Perfluoro[2,3,4-13	C3]Butanesulfonic Acid (M3F	PFBS)		83			70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)			TS)	155	Q		12-142	
Perfluoro[1,2,3,4,6	6-13C5]Hexanoic Acid (M5PF	HxA)		76			57-129	
Perfluoro[1,2,3,4-7	13C4]Heptanoic Acid (M4PFF	IpA)		85			60-129	
Perfluoro[1,2,3-13	C3]Hexanesulfonic Acid (M3	PFHxS)		87			71-134	
Perfluoro[13C8]O	ctanoic Acid (M8PFOA)			85			62-129	
1H,1H,2H,2H-Per	fluoro[1,2-13C2]Octanesulfor	ic Acid (M2-6:2FT	rs)	115			14-147	
Perfluoro[13C9]No	onanoic Acid (M9PFNA)			89			59-139	
Perfluoro[13C8]O	ctanesulfonic Acid (M8PFOS)	1		85			69-131	
Perfluoro[1,2,3,4,5	5,6-13C6]Decanoic Acid (M6F	PFDA)		86			62-124	
1H,1H,2H,2H-Per	fluoro[1,2-13C2]Decanesulfor	nic Acid (M2-8:2F	TS)	94			10-162	
N-Deuteriomethyl	perfluoro-1-octanesulfonamid	oacetic Acid (d3-N	NMeFOSAA)	60			24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)		87			55-137			
Perfluoro[13C8]O	ctanesulfonamide (M8FOSA)			19			10-112	
N-Deuterioethylpe	erfluoro-1-octanesulfonamidoa	acetic Acid (d5-NE	tFOSAA)	66			27-126	
Perfluoro[1,2-13C	2]Dodecanoic Acid (MPFDOA	\)		85			48-131	
Perfluoro[1,2-13C	2]Tetradecanoic Acid (M2PF	TEDA)		78			22-136	
2,3,3,3-Tetrafluoro (M3HFPO-DA)	o-2-[1,1,2,2,3,3,3-Heptafluoro	propoxy]-13C3-Pr	ropanoic Acid	90			10-165	
Perfluoro[13C2]He	exadecanoic Acid (M2PFHxD	A)		71			10-206	

	Serial_No:101921			
Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155	
Project Number:	22816	Report Date:	10/19/21	
	SAMPLE RESULTS			
Lab ID:	L2154155-03	Date Collected:	10/05/21 14:00	
Client ID:	FIELD REAGENT BLANK	Date Received:	10/05/21	
Sample Location:	KITTERY, ME	Field Prep:	Not Specified	
Sample Depth:				
Matrix:	Water	Extraction Method:	: ALPHA 23528	
Analytical Method:	134.LCMSMS-ID	Extraction Date:	10/12/21 08:45	
Analytical Date:	10/13/21 10:33			
Analyst:	HT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.90	0.387	1			
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.90	0.376	1			
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.90	0.226	1			
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.90	0.429	1			
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.90	0.311	1			
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.90	0.233	1			
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.90	0.214	1			
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.90	0.357	1			
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.90	0.224	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.90	1.26	1			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.90	0.653	1			
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.90	0.296	1			
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.90	0.478	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.289	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.90	1.15	1			
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.90	1.06	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.615	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.247	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.90	0.931	1			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.90	0.551	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.763	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.353	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.90	0.311	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.235	1			
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	47.5	21.6	1			
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	1.90	0.319	1			
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	3.80	1.18	1			

						Serial_No	0:10192117:46
Project Name:	KITTERY MUNICIP	AL LANDFILL			Lab Nu	umber:	L2154155
Project Number:	22816				Report	t Date:	10/19/21
		SAMPL	E RESULT	S			
Lab ID: Client ID: Sample Location:	L2154155-03 FIELD REAGENT KITTERY, ME	BLANK			Date Co Date Re Field Pre	llected: ceived: ep:	10/05/21 14:00 10/05/21 Not Specified
Sample Depth:		Pocult	Qualifier	Unito	ы	МОІ	Dilution Easter
	d Asida hu laatana Dil	rtion Monofield		Units	RL	MDL	Dilution Factor
Penluonnated Alky	A ACIOS BY ISOTOPE DIII	ution - Mansheid	Lap				
Perfluorooctadecanoic Ad	cid (PFODA)	ND		ng/l	3.80	1.09	1
PFAS, Total (6)		ND		ng/l	1.90	0.214	1
Surrogate				% Recovery	Qualif	Acc ier (ceptance Criteria
Perfluoro[13C4]Bu	itanoic Acid (MPFBA)			98			58-132
Perfluoro[13C5]Pe	entanoic Acid (M5PFPEA)			112			62-163
Perfluoro[2,3,4-13	C3]Butanesulfonic Acid (M3	BPFBS)		105			70-131
1H,1H,2H,2H-Perf	luoro[1,2-13C2]Hexanesulf	onic Acid (M2-4:2FT	S)	83			12-142
Perfluoro[1,2,3,4,6	-13C5]Hexanoic Acid (M5F	PFHxA)		93			57-129
Perfluoro[1,2,3,4-1	3C4]Heptanoic Acid (M4PF	FHpA)		97			60-129
Perfluoro[1,2,3-13	C3]Hexanesulfonic Acid (M	3PFHxS)		105			71-134
Perfluoro[13C8]Oc	tanoic Acid (M8PFOA)			99	62-129		62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)			5)	93	3 14-147		14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)				107	59-139		59-139
Perfluoro[13C8]Oc	tanesulfonic Acid (M8PFO	S)		104			69-131
Perfluoro[1,2,3,4,5	,6-13C6]Decanoic Acid (M6	6PFDA)		102			62-124
1H,1H,2H,2H-Perf	luoro[1,2-13C2]Decanesulf	onic Acid (M2-8:2FT	S)	115			10-162
N-Deuteriomethylp	perfluoro-1-octanesulfonami	idoacetic Acid (d3-NN	MeFOSAA)	76			24-116
Perfluoro[1,2,3,4,5	i,6,7-13C7]Undecanoic Acid	l (M7-PFUDA)		106			55-137

36

75

99

94

110

82

10-112

27-126

48-131

22-136

10-165

10-206

Perfluoro[13C8]Octanesulfonamide (M8FOSA)

Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)

Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)

(M3HFPO-DA)

Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)

N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)

2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155
Project Number:	22816	Report Date:	10/19/21

Method Blank Analysis Batch Quality Control

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	10/13/21 06:58	Extraction Date:	10/12/21 08:45
Analyst:	HT		

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for	sample(s):	01-03	Batch:	WG1557386-7
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		0.408	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		0.396	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.238	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00		0.452	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.328	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		0.245	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.225	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.376	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		0.236	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		1.33	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		0.688	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.312	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.504	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.304	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00		1.21	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	2.00		1.12	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00		0.648	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.260	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00		0.980	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00		0.580	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		0.804	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.372	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.327	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.248	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPC DA)	ND)-		ng/l	50.0		22.7	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		0.336	

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155					
Project Number:	22816	Report Date:	10/19/21					
	Method Blank Analysis Batch Quality Control							

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	10/13/21 06:58	Extraction Date:	10/12/21 08:45
Analyst:	HT		

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution ·	- Mansfield	Lab for sa	mple(s): 01-03	Batch:	WG1557386-1
Perfluorohexadecanoic Acid (PFHxDA)	ND		ng/l	4.00	1.24	
Perfluorooctadecanoic Acid (PFODA)	ND		ng/l	4.00	1.15	
PFAS, Total (6)	ND		ng/l	2.00	0.225	

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155
Project Number:	22816	Report Date:	10/19/21
	Method Blank Analysis Batch Quality Control		
	Laton quality control		

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	10/13/21 06:58	Extraction Date:	10/12/21 08:45
Analyst:	HT		

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by Isotope	e Dilution -	Mansfield L	ab for sa	mple(s):	01-03	Batch:	WG1557386-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	84	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	94	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	87	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	74	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	81	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	83	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	88	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	86	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	82	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	91	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	96	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	65	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	90	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	24	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	64	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	84	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	79	22-136
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	93	10-165
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	68	10-206
1H,1H,2H,2H-Perfluorododecane Sulfonate (M2D4-10:2FTS)	112	50-150

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155
Project Number:	22816	Report Date:	10/19/21
	Method Blank Analysis Batch Quality Control		

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	10/13/21 19:14	Extraction Date:	10/12/21 08:45
Analyst:	RS		

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotop	e Dilution ·	- Mansfield	Lab for sa	mple(s): 01-03	Batch:	WG1557386-1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.580	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	54		10-112	
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (d3-NMeFOSA)	47		10-161	
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (d5-NEtFOSA)	44		10-160	
2-(N-Methyl-d3-Perfluoro-1-Octanesulfonamido)ethan-d4-ol (d7-NMeFOSE)	57		10-189	
2-(N-Ethyl-d5-Perfluoro-1-Octanesulfonamido)ethan-d4-ol (d9-NEtFOSE)	62		10-187	

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Parameter	LCS %Recoverv	Qual	LCSD %Recoverv	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
	,	<u></u>		<u></u>			4441		
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfield Lab	Associated	sample(s): 01-03	Batch:	WG1557386-2				
Perfluorobutanoic Acid (PFBA)	93		-		67-148	-		30	
Perfluoropentanoic Acid (PFPeA)	90		-		63-161	-		30	
Perfluorobutanesulfonic Acid (PFBS)	94		-		65-157	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	93		-		37-219	-		30	
Perfluorohexanoic Acid (PFHxA)	92		-		69-168	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	92		-		52-156	-		30	
Perfluoroheptanoic Acid (PFHpA)	89		-		58-159	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	89		-		69-177	-		30	
Perfluorooctanoic Acid (PFOA)	91		-		63-159	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	96		-		49-187	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	88		-		61-179	-		30	
Perfluorononanoic Acid (PFNA)	92		-		68-171	-		30	
Perfluorooctanesulfonic Acid (PFOS)	94		-		52-151	-		30	
Perfluorodecanoic Acid (PFDA)	88		-		63-171	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	88		-		56-173	-		30	
Perfluorononanesulfonic Acid (PFNS)	92		-		48-150	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	86		-		60-166	-		30	
Perfluoroundecanoic Acid (PFUnA)	92		-		60-153	-		30	
Perfluorodecanesulfonic Acid (PFDS)	93		-		38-156	-		30	
Perfluorooctanesulfonamide (FOSA)	92		-		46-170	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	98		-		45-170	-		30	
Perfluorododecanoic Acid (PFDoA)	95		-		67-153	-		30	

Lab Control Sample Analysis

Batch Quality Control

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Lab Number: L2154155 Report Date: 10/19/21

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Limits RPD Limits Qual Qual Qual Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-03 Batch: WG1557386-2 Perfluorotridecanoic Acid (PFTrDA) 98 48-158 30 --Perfluorotetradecanoic Acid (PFTA) 91 59-182 30 --2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid 95 57-162 30 --(HFPO-DA) 4,8-Dioxa-3h-Perfluorononanoic Acid 95 69-143 30 --(ADONA) Perfluorohexadecanoic Acid (PFHxDA) 40-167 30 116 --Perfluorooctadecanoic Acid (PFODA) 33 10-119 30 --

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Lab Number: L2154155

Report Date: 10/19/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
				D / 1					

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-03 Batch: WG1557386-2

Surrogate	LCS %Recoverv	Qual	LCSD %Recoverv	Qual	Acceptance Criteria
	,		,		
Perfluoro[13C4]Butanoic Acid (MPFBA)	85				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	94				62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88				70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	76				12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	81				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	85				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90				71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	88				62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	91				14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	92				59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	91				69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87				62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	103				10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	70				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	89				55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21				10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	64				27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	85				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	81				22-136
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	85				10-165
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	73				10-206
1H,1H,2H,2H-Perfluorododecane Sulfonate (M2D4-10:2FTS)	117				50-150

Project Name: KITTERT MUNICIPAL LANDFILL
--

Project Number: 22816

 Lab Number:
 L2154155

 Report Date:
 10/19/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	/ Qua	al Limits	RPD	Qual	Limits
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	ample(s): 01	-03 Bato	ch: WG1557386-2			
Perfluorooctanesulfonamide (FOSA)	103		-		46-170	-		30

	LCS	LCSD		Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery Qua	al %Recovery	Qual	Criteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	54			10-112	
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (d3-NMeFOSA)	47			10-161	
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (d5-NEtFOSA)	40			10-160	
2-(N-Methyl-d3-Perfluoro-1-Octanesulfonamido)ethan-d4-ol (d7-NMeFOSE)	59			10-189	
2-(N-Ethyl-d5-Perfluoro-1-Octanesulfonamido)ethan-d4-ol (d9-NEtFOSE)	62			10-187	

Matrix Spike Analysis Batch Quality Control

Project Name:	KITTERY MUNICIPAL LANDFILL

Project Number: 22816

```
Lab Number: L2154155
Report Date: 10/19/21
```

Native MS MS MS MSD MSD Recovery RPD %Recovery Limits Qual Parameter Sample Added Found Qual Found %Recovery Qual RPD Limits Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-03 QC Batch ID: WG1557386-3 QC Sample: L2153931-01 Client ID: MS Sample Perfluorobutanoic Acid (PFBA) 2.55 37.1 36.9 93 -67-148 -30 -91 Perfluoropentanoic Acid (PFPeA) 3.33 37.1 37.0 63-161 30 ---Perfluorobutanesulfonic Acid (PFBS) 32.9 93 65-157 1.46J 32.0 30 ---1H.1H.2H.2H-Perfluorohexanesulfonic 34.7 92 ND 31.9 37-219 30 ---Acid (4:2FTS) Perfluorohexanoic Acid (PFHxA) 37.1 30 3.56 37.4 91 69-168 ---Perfluoropentanesulfonic Acid ND 34.9 32.8 94 52-156 30 ---(PFPeS) Perfluoroheptanoic Acid (PFHpA) 1.71J 37.1 35.8 92 58-159 30 ---Perfluorohexanesulfonic Acid (PFHxS) 2.31 33.9 32.9 90 69-177 -30 --Perfluorooctanoic Acid (PFOA) 91 5.70 37.1 39.6 63-159 30 ---1H,1H,2H,2H-Perfluorooctanesulfonic ND 95 30 35.3 33.6 49-187 ---Acid (6:2FTS) Perfluoroheptanesulfonic Acid ND 35.3 32.8 93 61-179 30 ---(PFHpS) Perfluorononanoic Acid (PFNA) 0.801J 37.1 35.2 68-171 30 93 ---Perfluorooctanesulfonic Acid (PFOS) 8.71 34.4 42.7 99 52-151 30 ---Perfluorodecanoic Acid (PFDA) 2.03 37.1 34.2 87 63-171 30 ---1H,1H,2H,2H-Perfluorodecanesulfonic ND 35.6 29.8 84 56-173 -30 --Acid (8:2FTS) Perfluorononanesulfonic Acid (PFNS) ND 35.7 32.3 90 48-150 30 ---N-Methyl ND 37.1 32.6 88 60-166 30 ---Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) Perfluoroundecanoic Acid (PFUnA) ND 37.1 33.3 90 60-153 30 ---Perfluorodecanesulfonic Acid (PFDS) ND 35.8 34.7 97 38-156 30 ---Perfluorooctanesulfonamide (FOSA) ND 37.1 32.4 30 87 46-170 ---N-Ethyl ND 37.1 30 33.5 90 45-170 ---Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA) Perfluorododecanoic Acid (PFDoA) ND 37.1 34.1 92 67-153 30 ---

Matrix Spike Analysis

		Batch Quality Control		
Project Name:	KITTERY MUNICIPAL LANDFILL	Datch Quality Control	Lab Number:	L2154155
Project Number:	22816		Report Date:	10/19/21

	Native	MS	_MS	MS	- ·	MSD	MSD	Recovery	0	RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery Qu	ual Limits	RPD Qua	al Limits
Perfluorinated Alkyl Acids by Sample	Isotope Dilution	- Mansfield	Lab Associa	ated sample(s)	: 01-03	QC Batch	ID: WG1557386-3	QC Sample:	L2153931-01	Client ID: MS
Perfluorotridecanoic Acid (PFTrDA)	ND	37.1	34.8	94		-	-	48-158	-	30
Perfluorotetradecanoic Acid (PFTA)	ND	37.1	34.0	92		-	-	59-182	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	362	312	86		-	-	57-162	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	35	31.7	90		-	-	69-143	-	30
Perfluorohexadecanoic Acid (PFHxDA)	ND	37.1	42.4	114		-	-	40-167	-	30
Perfluorooctadecanoic Acid (PFODA)	ND	37.1	27.8	75		-	-	10-119	-	30
Perfluorododecane Sulfonic Acid (PFDoDS)	ND	35.9	30.9	86		-	-	85-154	-	30
1H,1H,2H,2H- Perfluorododecanesulfonic Acid (10:2FTS)	ND	35.8	32.4	91		-	-	81-188	-	30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	34.6	31.9	92		-	-	55-158	-	30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	35	28.4	81		-	-	52-156	-	30

	MS	5	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
- 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	119				10-162	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	157	Q			12-142	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	162	Q			14-147	
1H,1H,2H,2H-Perfluorododecane Sulfonate (M2D4-10:2FTS)	134				50-150	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HEPO-DA)	72				10-165	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	70				27-126	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	55				24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	75				55-137	

Matrix Spike Analysis

Project Name:	KITTERY MUNICIPAL LANDFILL	Batch Quality Control	Lab Number:	L2154155
Project Number:	22816		Report Date:	10/19/21

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by	Isotope Dilutio	n - Mansfield	Lab Assoc	ciated sample(s):	01-03	QC Batch	ID: WG155738	6-3 (QC Sample:	L215393	31-01	Client ID: N	ЛS
Sample													

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	r % Recovery Qualifier	Criteria
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	74		62-124
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	65		57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	69		60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	83		71-134
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	73		48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	69		22-136
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	61		10-206
Perfluoro[13C4]Butanoic Acid (MPFBA)	72		58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	78		62-163
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	16		10-112
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	79		69-131
Perfluoro[13C8]Octanoic Acid (M8PFOA)	72		62-129
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	75		59-139
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	78		70-131

_

Matrix Spike Analysis

Project Name: Project Number:	KITTERY MUNIC 22816	CIPAL LAN	DFILL	I	Batch G	Quality Cor	ntrol		Lab Nun Report L	nber: Date:	L: 1	2154155 0/19/21	
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids Sample	by Isotope Dilution	- Mansfield	Lab Associ	iated sample(s):	01-03	QC Batch	ID: WG1557386	6-3	QC Sample:	L215393	31-01	Client ID:	MS
Perfluorooctanesulfonamide (FO	SA) ND	37.1	37.4	101		-	-		46-170	-		30	
N-Methyl Perfluorooctane	ND	186	199	107		-	-		10-185	-		30	

N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	ND	186	199	107	-	-	10-185	-	30
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	ND	186	202	109	•	-	10-202	-	30
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	ND	92.8	104	112	•	-	10-209	-	30
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)	ND	92.8	94.1	101	•	-	66-176	-	30

	MS		MSD		Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
- 2-(N-Ethyl-d5-Perfluoro-1-Octanesulfonamido)ethan-d4-ol (d9-NEtFOSE)	51				10-187	
2-(N-Methyl-d3-Perfluoro-1-Octanesulfonamido)ethan-d4-ol (d7-	49				10-189	
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (d5-NEtFOSA)	43				10-160	
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (d3-NMeFOSA)	47				10-161	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	46				10-112	

Lab Duplicate Analysis Batch Quality Control

Project Name: KITTERY MUNICIPAL LANDFILL

Lab Number: L2154155 Report Date: 10/19/21

Project Number: 22816

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution - D: B101A	Mansfield Lab Associated sa	ample(s): 01-03 QC Ba	atch ID: WG15	57386-4	QC Sample:	L2154155-01	Client
Perfluorobutanoic Acid (PFBA)	8.35	8.70	ng/l	4		30	
Perfluoropentanoic Acid (PFPeA)	13.3	14.0	ng/l	5		30	
Perfluorobutanesulfonic Acid (PFBS)	6.91	7.30	ng/l	5		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	ND	ND	ng/l	NC		30	
Perfluorohexanoic Acid (PFHxA)	18.3	18.9	ng/l	3		30	
Perfluoropentanesulfonic Acid (PFPeS)	2.88	2.84	ng/l	1		30	
Perfluoroheptanoic Acid (PFHpA)	11.1	11.2	ng/l	1		30	
Perfluorohexanesulfonic Acid (PFHxS)	33.4	33.6	ng/l	1		30	
Perfluorooctanoic Acid (PFOA)	33.2	34.6	ng/l	4		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	1.75J	ND	ng/l	NC		30	
Perfluoroheptanesulfonic Acid (PFHpS)	0.962J	1.08J	ng/l	NC		30	
Perfluorononanoic Acid (PFNA)	3.19	3.30	ng/l	3		30	
Perfluorooctanesulfonic Acid (PFOS)	38.6	39.0	ng/l	1		30	
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC		30	
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/l	NC		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC		30	
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC		30	
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC		30	
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC		30	

Lab Duplicate Analysis Batch Quality Control

Project Name: KITTERY MUNICIPAL LANDFILL

Lab Number: L2154155 Report Date: 10/19/21

Project Number: 22816

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Isotope Dilution - Mar ID: B101A	sfield Lab Associated sa	ample(s): 01-03 QC B	atch ID: WG15	57386-4 (QC Sample: L2154155-01 C	lient
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30	
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30	
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30	
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30	
Perfluorohexadecanoic Acid (PFHxDA)	ND	ND	ng/l	NC	30	
Perfluorooctadecanoic Acid (PFODA)	ND	ND	ng/l	NC	30	

Surrogate	%Recovery Q	ualifier %Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	76	83		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	80	89		62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	74	81		70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	139	156	Q	12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	65	71		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	74	81		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	78	88		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	77	83		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	122	127		14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78	83		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	79	85		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	74	83		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	91	100		10-162	

Project Name:	KITTERY MUNICIPAL L	ANDFILL	Batch Quality Control			Lab Num	ber:	L2154155
Project Number:	22816					Report Da	ate:	10/19/21
							RPD	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	Limits	
Perflueringted Alkyl Acid	s by Isotopo Dilution - Man	sfield Lab Associated s	ample(s): 01-03 OC Bat		57386-1 (C Sample	1 215/155	01 Client

Acceptance Criteria Surrogate %Recovery Qualifier %Recovery Qualifier N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 53 61 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 75 81 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 15 14 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 60 62 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 73 78 48-131 Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 67 73 22-136 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid 81 89 10-165 (M3HFPO-DA) Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA) 60 66 10-206

ID: B101A

METALS

Serial_No:10192117:46

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155				
Project Number:	22816	Report Date:	10/19/21				
SAMPLE RESULTS							
Lab ID:	L2154155-01	Date Collected:	10/05/21 11:40				
Client ID:	B101A	Date Received:	10/05/21				
Sample Location:	KITTERY, ME	Field Prep:	Not Specified				

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	ND		mg/l	0.005	0.002	1	10/08/21 06:52	10/08/21 19:39	EPA 3005A	1,6010D	BV
Calcium, Total	78.9		mg/l	0.100	0.035	1	10/08/21 06:52	10/08/21 19:39	EPA 3005A	1,6010D	BV
Iron, Total	0.047	J	mg/l	0.050	0.009	1	10/08/21 06:52	10/08/21 19:39	EPA 3005A	1,6010D	BV
Magnesium, Total	15.0		mg/l	0.100	0.015	1	10/08/21 06:52	10/08/21 19:39	EPA 3005A	1,6010D	BV
Manganese, Total	0.137		mg/l	0.010	0.002	1	10/08/21 06:52	10/08/21 19:39	EPA 3005A	1,6010D	BV
Potassium, Total	3.79		mg/l	2.50	0.237	1	10/08/21 06:52	10/08/21 19:39	EPA 3005A	1,6010D	BV
Sodium, Total	41.4		mg/l	2.00	0.120	1	10/08/21 06:52	10/08/21 19:39	EPA 3005A	1,6010D	BV

Serial_No:10192117:46

Project Name:	KITTERY MUNICIPAL LANDFILL	Lab Number:	L2154155				
Project Number:	22816	Report Date:	10/19/21				
SAMPLE RESULTS							
Lab ID:	L2154155-02	Date Collected:	10/05/21 12:00				
Client ID:	B101B	Date Received:	10/05/21				
Sample Location:	KITTERY, ME	Field Prep:	Not Specified				

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Manst	field Lab										
Arsenic, Total	0.023		mg/l	0.005	0.002	1	10/08/21 06:52	10/08/21 19:43	EPA 3005A	1,6010D	BV
Calcium, Total	84.4		mg/l	0.100	0.035	1	10/08/21 06:52	10/08/21 19:43	EPA 3005A	1,6010D	BV
Iron, Total	0.893		mg/l	0.050	0.009	1	10/08/21 06:52	10/08/21 19:43	EPA 3005A	1,6010D	BV
Magnesium, Total	23.4		mg/l	0.100	0.015	1	10/08/21 06:52	10/08/21 19:43	EPA 3005A	1,6010D	BV
Manganese, Total	0.739		mg/l	0.010	0.002	1	10/08/21 06:52	10/08/21 19:43	EPA 3005A	1,6010D	BV
Potassium, Total	3.30		mg/l	2.50	0.237	1	10/08/21 06:52	10/08/21 19:43	EPA 3005A	1,6010D	BV
Sodium, Total	32.4		mg/l	2.00	0.120	1	10/08/21 06:52	10/08/21 19:43	EPA 3005A	1,6010D	BV

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:22816

 Lab Number:
 L2154155

 Report Date:
 10/19/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield I	_ab for sample(s):	01-02 E	Batch: WO	G15549	80-1				
Arsenic, Total	ND	mg/l	0.005	0.002	1	10/08/21 06:52	10/08/21 20:01	1,6010D	BV
Calcium, Total	ND	mg/l	0.100	0.035	1	10/08/21 06:52	10/08/21 20:01	1,6010D	BV
Iron, Total	ND	mg/l	0.050	0.009	1	10/08/21 06:52	10/08/21 20:01	1,6010D	BV
Magnesium, Total	ND	mg/l	0.100	0.015	1	10/08/21 06:52	10/08/21 20:01	1,6010D	BV
Manganese, Total	ND	mg/l	0.010	0.002	1	10/08/21 06:52	10/08/21 20:01	1,6010D	BV
Potassium, Total	ND	mg/l	2.50	0.237	1	10/08/21 06:52	10/08/21 20:01	1,6010D	BV
Sodium, Total	ND	mg/l	2.00	0.120	1	10/08/21 06:52	10/08/21 20:01	1,6010D	BV

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis

Batch Quality Control

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Lab Number: L2154155 Report Date: 10/19/21

LCS LCSD %Recovery %Recovery %Recovery Limits Parameter Qual RPD **RPD Limits** Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01-02 Batch: WG1554980-2 Arsenic, Total 103 80-120 --Calcium, Total 96 80-120 --Iron, Total 80-120 96 --Magnesium, Total 97 80-120 --Manganese, Total 93 80-120 --Potassium, Total 80-120 98 --Sodium, Total 97 80-120 --

INORGANICS & MISCELLANEOUS

Serial	No:1	01921	17:46
--------	------	-------	-------

L2154155

10/19/21

Lab Number:

Report Date:

Project Name:	KITTERY MUNICIPAL LANDFILL
Project Name.	

Project Number: 22816

SAMPLE RESULTS

Lab ID:	L2154155-01	Date Collected:	10/05/21 11:40
Client ID:	B101A	Date Received:	10/05/21
Sample Location:	KITTERY, ME	Field Prep:	Not Specified

Sample Depth: Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	rough Lab	1								
Alkalinity, Total	147.	mg	CaCO3/L	2.00	NA	1	-	10/18/21 12:35	121,2320B	JB
Solids, Total Dissolved	450		mg/l	10	3.1	1	-	10/08/21 09:30	121,2540C	DW
Nitrogen, Ammonia	0.088		mg/l	0.075	0.024	1	10/16/21 14:30	10/18/21 17:51	121,4500NH3-BH	AT
Nitrogen, Nitrate	0.19		mg/l	0.10	0.023	1	-	10/06/21 11:26	44,353.2	JO
Total Organic Carbon	2.92		mg/l	0.500	0.114	1	-	10/14/21 15:21	121,5310C	DW
Anions by Ion Chromatograp	hy - West	borough L	ab							
Chloride	35.5		mg/l	0.500	0.083	1	-	10/15/21 13:44	44,300.0	AT
Sulfate	176.		mg/l	25.0	11.4	25	-	10/15/21 13:32	44,300.0	AT

Serial	No:1	01921	17:46
--------	------	-------	-------

L2154155

10/19/21

Lab Number:

Report Date:

Project Name: KITTERY MUNICIPAL LANDFILI	Project Name:	KITTERY MUNICIPAL LANDFILL
--	---------------	----------------------------

Project Number: 22816

SAMPLE RESULTS

Lab ID:	L2154155-02	Date Collected:	10/05/21 12:00
Client ID:	B101B	Date Received:	10/05/21
Sample Location:	KITTERY, ME	Field Prep:	Not Specified

Sample Depth: Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	rough Lab									
Alkalinity, Total	194.	mg	CaCO3/L	2.00	NA	1	-	10/18/21 12:35	121,2320B	JB
Solids, Total Dissolved	490		mg/l	10	3.1	1	-	10/08/21 09:30	121,2540C	DW
Nitrogen, Ammonia	0.139		mg/l	0.075	0.024	1	10/16/21 14:30	10/18/21 17:57	121,4500NH3-BH	AT
Nitrogen, Nitrate	ND		mg/l	0.10	0.023	1	-	10/06/21 11:27	44,353.2	JO
Total Organic Carbon	1.65		mg/l	0.500	0.114	1	-	10/14/21 15:38	121,5310C	DW
Anions by Ion Chromatograp	hy - Westl	borough L	ab							
Chloride	34.9		mg/l	0.500	0.083	1	-	10/15/21 13:55	44,300.0	AT
Sulfate	170.		mg/l	10.0	4.54	10	-	10/15/21 18:41	44,300.0	AT

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:22816

 Lab Number:
 L2154155

 Report Date:
 10/19/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab for sa	mple(s): 01	I-02 Ba	tch: WC	61555090-1				
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	10/06/21 11:05	44,353.2	JO
General Chemistry -	Westborough Lab for sai	mple(s): 01	I-02 Ba	tch: WG	61555971-1				
Solids, Total Dissolved	ND	mg/l	10	3.1	1	-	10/08/21 09:30	121,2540C	DW
General Chemistry -	Westborough Lab for sai	mple(s): 01	I-02 Ba	tch: WC	61558388-1				
Total Organic Carbon	ND	mg/l	0.500	0.114	1	-	10/14/21 05:26	121,5310C	DW
Anions by Ion Chrom	atography - Westborough	Lab for s	ample(s)	: 01-02	Batch: W	G1559358-1			
Chloride	0.088 J	mg/l	0.500	0.083	1	-	10/15/21 17:13	44,300.0	AT
Sulfate	ND	mg/l	1.00	0.454	1	-	10/15/21 17:13	44,300.0	AT
General Chemistry -	Westborough Lab for sai	mple(s): 01	I-02 Ba	tch: WG	61559456-1				
Nitrogen, Ammonia	ND	mg/l	0.075	0.024	1	10/16/21 14:30	10/18/21 17:43	121,4500NH3-B	H AT
General Chemistry -	Westborough Lab for sai	mple(s): 01	I-02 Ba	tch: WG	61559931-1				
Alkalinity, Total	ND	mg CaCO3/	L 2.00	NA	1	-	10/18/21 12:35	121,2320B	JB

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2154155 Report Date: 10/19/21

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Parameter

Nitrogen, Nitrate

Solids. Total Dissolved

Total Organic Carbon

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD Limits** Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1555090-2 96 -90-110 General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1555971-2 89 80-120 -

90-110

General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1558388-2

97

Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01-02 Batch: WG1559358-2

Chloride 99 -90-110 Sulfate 98 _ 90-110 General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1559456-2

-

Nitrogen, Ammonia 106 80-120 20 -General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1559931-2 Alkalinity, Total 103 90-110 10

20

80-120

-

Matrix Spike Analysis

-

-

Project Name: Project Number:	KITTERY MUNICI 22816	PAL LANDF	ILL	Ва	tch Qua	ality Contr	ol	L F	.ab Number Report Date:	:	L2154 10/19	4155 9/21
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - We	stborough Lab Asso	ciated samp	ole(s): 01-02	2 QC Batch I	D: WG1	559456-4	QC Sample:	L21541	155-01 Clie	ent ID:	B101A	l l

General Chemistry - Westborough Lab Associated sample(s): 01-02	QC Batch ID: WG1559931-4	QC Sample: L2154155-01	Client ID: B101A

98

Alkalinity, Total	147.	100	253	106	-	-	86-116	-	10
-------------------	------	-----	-----	-----	---	---	--------	---	----

Nitrogen, Ammonia

0.088

4

3.99

Lab Duplicate Analysis Batch Quality Control

Project Name:KITTERY MUNICIPAL LANDFILLProject Number:22816

 Lab Number:
 L2154155

 Report Date:
 10/19/21

Parameter Native Sample **Duplicate Sample** Units RPD Qual **RPD** Limits General Chemistry - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG1559456-3 QC Sample: L2154155-01 Client ID: B101A 0.044J NC Nitrogen, Ammonia 0.088 mg/l 20 General Chemistry - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG1559931-3 QC Sample: L2154155-01 Client ID: B101A Alkalinity, Total 147. mg CaCO3/L 150 2 10

Project Name: KITTERY MUNICIPAL LANDFILL Project Number: 22816

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2154155-01A	Vial HCI preserved	А	NA		4.5	Y	Absent		ME-8260(14)
L2154155-01B	Vial HCI preserved	А	NA		4.5	Y	Absent		ME-8260(14)
L2154155-01C	Vial HCI preserved	А	NA		4.5	Y	Absent		ME-8260(14)
L2154155-01D	Vial H2SO4 preserved	А	NA		4.5	Y	Absent		TOC-5310(28)
L2154155-01E	Vial H2SO4 preserved	А	NA		4.5	Y	Absent		TOC-5310(28)
L2154155-01F	Plastic 250ml unpreserved	А	NA		4.5	Y	Absent		A2-ME-537ISOTOPE-28+(14)
L2154155-01G	Plastic 250ml unpreserved	А	NA		4.5	Y	Absent		A2-ME-537ISOTOPE-28+(14)
L2154155-01H	Plastic 250ml HNO3 preserved	A	<2	<2	4.5	Y	Absent		AS-TI(180),MG-TI(180),MN-TI(180),FE- TI(180),K-TI(180),NA-TI(180),CA-TI(180)
L2154155-01I	Plastic 250ml unpreserved/No Headspace	А	NA		4.5	Y	Absent		ALK-T-2320(14)
L2154155-01J	Plastic 500ml unpreserved	А	7	7	4.5	Y	Absent		SO4-300(28),CL-300(28),NO3-353(2),TDS- 2540(7)
L2154155-01K	Plastic 500ml H2SO4 preserved	А	<2	<2	4.5	Y	Absent		NH3-4500(28)
L2154155-02A	Vial HCI preserved	А	NA		4.5	Y	Absent		ME-8260(14)
L2154155-02B	Vial HCI preserved	А	NA		4.5	Y	Absent		ME-8260(14)
L2154155-02C	Vial HCI preserved	А	NA		4.5	Y	Absent		ME-8260(14)
L2154155-02D	Vial H2SO4 preserved	А	NA		4.5	Y	Absent		TOC-5310(28)
L2154155-02E	Vial H2SO4 preserved	А	NA		4.5	Y	Absent		TOC-5310(28)
L2154155-02F	Plastic 250ml unpreserved	А	NA		4.5	Y	Absent		A2-ME-537ISOTOPE-28+(14)
L2154155-02G	Plastic 250ml unpreserved	А	NA		4.5	Y	Absent		A2-ME-537ISOTOPE-28+(14)
L2154155-02H	Plastic 250ml HNO3 preserved	A	<2	<2	4.5	Y	Absent		AS-TI(180),FE-TI(180),MG-TI(180),MN- TI(180),NA-TI(180),K-TI(180),CA-TI(180)
L2154155-02I	Plastic 250ml unpreserved/No Headspace	А	NA		4.5	Y	Absent		ALK-T-2320(14)
L2154155-02J	Plastic 500ml unpreserved	А	7	7	4.5	Y	Absent		SO4-300(28),CL-300(28),TDS-2540(7),NO3- 353(2)
L2154155-02K	Plastic 500ml H2SO4 preserved	А	<2	<2	4.5	Y	Absent		NH3-4500(28)

Project Name: KITTERY MUNICIPAL LANDFILL Project Number: 22816

Container Information			Initial		Final Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2154155-03A	Plastic 250ml unpreserved	А	NA		4.5	Y	Absent		A2-ME-537ISOTOPE-28+(14)

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Serial_No:10192	117:46
Lab Number:	L2154155
Report Date:	10/19/21

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PENA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroneptanoic Acid	РЕНРА	375-85-9
Perfluoronexanoic Acid		307-24-4
	PFPEA	2706-90-3
Peniuorobutanoic Acid	РЕВА	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H 1H 2H 2H-Perfluorododecanesulfonic Acid	10.2ETS	120226 60 0
1H 1H 2H 2H-Perfluorodecanesulfonic Acid	8-2FTS	20108 24 4
1H 1H 2H 2H-Perfluorooctanesulfonic Acid	6.2FTS	27610 07 2
1H 1H 2H 2H-Perfluorobeyapesulfonic Acid	0.2FTS	27019-97-2
	4.21 10	13/124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYELLIOROALKYL ETHER CARBOXYLIC ACIDS		
2 3 3 3-Tetrafluoro-2-[1 1 2 2 3 3 3-Hentafluoropropovy]-Propanoic Acid		12252 12 6
4.8-Dioya-3b-Derfluorononanoio Acid		13232-13-0
	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Pertluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonatluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Serial_No:10192117:46

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Lab Number: L2154155

Report Date: 10/19/21

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Lab Number: L2154155

Report Date: 10/19/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- М - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:10192117:46

Project Name: KITTERY MUNICIPAL LANDFILL

Project Number: 22816

Lab Number: L2154155

Report Date: 10/19/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: KITTERY MUNICIPAL LANDFILL Project Number: 22816
 Lab Number:
 L2154155

 Report Date:
 10/19/21

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane Toxaphene Aldrin alpha-BHC beta-BHC gamma-BHC delta-BHC Dieldrin DDD DDE DDT Endosulfan I Endosulfan II

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ALPHA	CHAIN OF CU	STODY	PAG	GE	1	_ OF	1	-9	Date R	ec'd in l	.ab:	W	15	12	1		ALPHA JOB #: REMOI	15
8 Walkup Drive /estbore, MA 01581 08)-698-9220	320 Forbes Blvd Marafield, MA 02018 Tel: Tel: (506)-822-9300	Project Inf Site Name:	ormation Kitlery Mun	icipal Land	nii	100			Report EMA	Informa IL 🗆 A	ation - DEx	Data D	eliverat	les			Billing Informat Same PO # as Client	ion
lient Information		Site Locatio	n: MacKenz	ie Rd Kitter	y, ME												inio	-
ient:Maine DEP		EGAD Num	ber - 27816					_										
Contact Name:Matthew Young Project Manager: Matthew Young							1											
y: Augusta		Copies to: mark. Woodruff@ maine. gov																
ite:Maine	Zip Code:04333-0017	ALPHA Quote #:REM01							1									
one: 207-215-7841		Tum-Aroun	d Time	only canfirm	ad if any second	award)												
ail:matthew.r.young	@maine.gov	Date Due:		ony contin	ied if pre-appr	oved)								ANALY	515			
idibonal Project Infor	mation: monitoring well and pore wa	ater well sample	es. REM00	186					II (Mod 537-isotpe)	15)		¥5					SAMPLE INFO Filtration G Field Lab to do	BOTTLES
ALPHA Lab ID (Lab Use Only)	Sample Point Name	Sample Date	Collection Time	Sample Matrix/ Type	Sample Location	Sample Collection Method	Treatment Status	PID Result	FAS - ALPHA Ful	ETHANE (RSK-1)	OC (8260	hort Landfill List					Preservation Lab to do Sample	TOTAL #
-4155-c1	B101A	10/5	1140	GW	PU	LFS	N		x	2	x	تم x		+	-	37	deep	
en	B101B	10/5	1200	GW	PU	LPS	N		x		x	x				62	.7' deer	p
	B102			GW		LES	N		-	-	x	x	-	_	_	_		_
	Porewater			AO		GS	NA		×		×	×	-	+	-	-		-
-03	Field Reagent Blank	10/5	1400	AQ	0	GS	NA		x		x				-			
															+			
ntainer Type	Preservative A-None O+Other			ontainer Ty	pe:				P	G	A			+	-		All samples	biect
Unber Glass Vial Glass Jacheta oup Colos Other Dinore Incore O-Bottle	C-HEND3 D-HERBO4 E=NMOH E=NMOH A=NAHSD4 A=NAHSD4 A=NAHSD4 A=NAHSD4 A=NAHSD4 A=NAHSD4 J=NHACL K-Zn Acetare	Mathe	Joseph Contraction		10/5 10/ Dran	21	16:35	5 741	A BOE	·	B 5 MG	AL	Cob Og	by		121/ 121/ 121/ 121/	to Alpha's Term Conditions. Get Teverse sid	s and

Quantitation Report (QT Reviewed)

Data Path : I:\VOLATILES\VOA105\2021\211015N\ Data File : V05211015N04.d : 15 Oct 2021 Acq On 7:41 pm Operator : VOA105:LAC Sample : WG1559537-5,31,10,10 Misc : WG1559537, ICAL18369 Sample Multiplier: 1 ALS Vial : 4 Quant Time: Oct 15 21:00:48 2021 Quant Method : I:\VOLATILES\VOA105\2021\211015N\V105_211007N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Fri Oct 08 11:24:02 2021 Response via : Initial Calibration

Sub List : 8260-Curve-Iodomethane - Megamix plus Diox-Iodomethane

V105_211007N_8260.m Sat Oct 16 13:30:04 2021 SVOA-INSTRUMENT

Quantitation Report (QT Reviewed)

Data Path : I:\VOLATILES\VOA105\2021\211015N\ Data File : V05211015N06.d Acq On : 15 Oct 2021 8:29 pm Operator : VOA105:PD Sample : L2154155-01,31,10,10,,A,PRI Misc : WG1559537, ICAL18369 Sample Multiplier: 1 ALS Vial : 6 Quant Time: Oct 16 12:06:46 2021 Quant Method : I:\VOLATILES\VOA105\2021\211015N\V105_211007N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Fri Oct 08 11:24:02 2021 Response via : Initial Calibration

Sub List : 8260-Curve-Iodomethane - Megamix plus Diox-Iodomethane

V105_211007N_8260.m Sat Oct 16 13:30:09 2021 SVOA-INSTRUMENT

Quantitation Report (QT Reviewed)

Data Path : I:\VOLATILES\VOA105\2021\211015N\ Data File : V05211015N07.d : 15 Oct 2021 8:52 pm Acq On Operator : VOA105:PD Sample : L2154155-02,31,10,10,,A,PRI Misc : WG1559537, ICAL18369 Sample Multiplier: 1 ALS Vial : 7 Quant Time: Oct 16 12:06:59 2021 Quant Method : I:\VOLATILES\VOA105\2021\211015N\V105_211007N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Fri Oct 08 11:24:02 2021 Response via : Initial Calibration

Sub List : 8260-Curve-Iodomethane - Megamix plus Diox-Iodomethane

V105_211007N_8260.m Sat Oct 16 13:30:15 2021 SVOA-INSTRUMENT

TOWN OF KITTERY Office of the Town Clerk 200 Rogers Road, Kittery, Maine 03904 Telephone: (207) 475-1313 Fax: (207) 439-6806

APPLICATION FOR VICTUALERS, INNKEEPERS, AND LODGING HOUSE OPERATORS LICENSE

Applicant's Name Totto d. Journa Firstos H
Applicant's Address 261 MYETLE AVE POETSMOUTH, NH. 03801
Applicant's mailing address if different from above:5AA
Applicant's Email address (required) CARLS. GOLDEN KITTERY C. GMARL. Com
Date of Birth $05/09/79$ Applicant's Telephone Number: $973' \cdot 819 \cdot 6531$
Business Name: CARIS WEAT WARKET
Business Address: 25 STATE D. LETTERY please print
Business Telephone Number: 201 479 1557
Signature of Applicant Q CAU DATE: 12/16/21
LICENSE FEE: \$

PLEASE SUBMIT THIS FORM WITH THE APPROPRIATE FEE TO THE TOWN CLERK'S OFFICE

RENEWAL OF LICENSE: \$25.00

٩-

TOWN OF KITTERY Office of the Town Clerk 200 Rogers Road, Kittery, Maine 03904 Telephone: (207) 475-1313 Fax: (207) 439-6806

APPLICATION FOR VICTUALERS, INNKEEPERS, AND LODGING HOUSE OPERATORS LICENSE

Applicant's Name Totto & JULIANA FELLITOSH
Applicant's Address 261 martine Auto Roman and and
please print
Applicant's mailing address if different from above: 544
Applicant's Email address (required) C'ARLS. GOLDEN KITTERY C. GMARL COM
Date of Birth $05/08/79$ $4/21/81$ Applicant's Telephone Number: $973.819.6531$ 973.626.0752
Business Name: THE GOUDEN HARVEST
Business Address: 47 STATE 2D. CLATER24 please print
Business Telephone Number: 207. 439.2113
Signature of Applicant The Contract DATE: 12/16/21
LICENSE FEE: \$ 50.00 RENEWAL OF LICENSE: \$25.00

PLEASE SUBMIT THIS FORM WITH THE APPROPRIATE FEE TO THE TOWN CLERK'S OFFICE

Council approval Kcc Dorations 2063-44

• •		그는 그는 그는 것을 알았는 것이 가지 않는 것이 없을 것 같아.			
		arn more by visiting hannafor	d.bloomIn4good.com.		
	alada ee ee een een een alaadeleen (hiddeleen) 1019-110 - See Barrier (hiddeleen)	ar an an ann an ann an ann an ann ann an	REAL ATOM ST		PSB14-HD6171
	,		Benger Savings Bank November 30 2021	<u>52-7438</u> 2112	01628
Bloomin' 4	Good Program			· .	с 1,
HAV		4	\$	154.00	
TO THE	Rittery Community Cen	<u>ler</u>	, P	.*	
OF			Desta or8pi	$\gamma \dot{\gamma}$	
·				AD-	
s loonume h	CH	ECK IS VOID IF COLORED BACKGROU	JND IS ABSENT - NOT VAL	Q WITH OUT AUTHORIZED	D FACSIMLE SIGNATUL
•	•		COESTERIO FILINA DE STUDIE DE CONTRACE DE CO	atonniny avoinais	
			KAKATAUKININAANONANENENINANINE	ay on yn ty y aw on thai is	,
		/ 	<u>, , , , , , , , , , , , , , , , , , , </u>		,
······································	·····	· · · · · · · · · · · · · · · · · · ·			
	*****	****	**************************************	<u>en onvansvijavajne are</u>	
You	******** Ha Please note: This donation che September Donations H	* * * * * * * * * * * * * * * * * * *	**************************************	Good Program.	
You Supp Good selec	Ha Please note: This donation che September Donations H orters raised \$154.00 from th Bouquet with the red circle s ted Hannaford location[s].	* * * * * * * Example 1 annaford Bloomin' 4 Geo book roffects any funds raised as a moni- lave Arrived! The purchase of the Bloomin' 4 sticker in September at your	**************************************	Good Program.	
You Supp Good selec We a comr give	Ha Please note: This donation cha Please note: This donation cha September Donations H orters raised \$154.00 from th l Bouquet with the red circle s ted Hannaford location[s]. re committed to giving back to hunities served. Thank you for back in your local community.	Amnaford Bloomin' 4 Go ock reflects any funds raised as a mon lave Arrived! The purchase of the Bloomin' 4 sticker in September at your o local non-profits across our or the important work you do t	A A A A A A A A A A A A A A A A A A A	Good Program,	······································
You Supp Good selec We a comr give	Ha Please note: This donation che Please note: This donation che September Donations H orters raised \$154.00 from th l Bouquet with the red circle s ted Hannaford location[s]. re committed to giving back to hunities served. Thank you fo back in your local community.	Amnaford Bloomin' 4 Geo tek reflects any funds raised as a mon- lave Arrived! the purchase of the Bloomin' 4 sticker in September at your o local non-profits across our or the Important work you do the	An and a second	Good Program.	
You Supp Good selec We a comr give	Ha Please note: This donation che Please note: This donation che September Donations H orters raised \$154.00 from th Bouquet with the red circle s ted Hannaford location[s]. re committed to giving back to hunities served. Thank you fo back in your local community.	A ** * * * Annaford Bloomin' 4 Geo book roffeots any funds raised as a moni- lave Arrived! The purchase of the Bloomin' 4 sticker in September at your o local non-profits across our or the Important work you do the or the Important work you do the Important work you do the or the Important work you do	An and a second	Good Program,	

1

THE FADE OF THIS DORUMENT INSTAGOTORICAGING	OUND XONAVIM CENTREMAND DRIGHTAR DOBING HUBBLE ON THAT AND A DRIVEN SECURITY AND A DRIVE
York Hospital	KENNEBUNK, ME 04043
LOVING KINDNESS 15 Hospital Drive Vork ME 03909	
	CHECKAMOUNT
DATE	***10,000.00***
12/20/2021	
Ten Thousand And 00/100 Dollars***********************************	*******

PAY TO THE ORDER OF KITTERY COMMUNITY CENTER

KITTERY COMMUNITY CENTER 120 ROGERS ROAD KITTERY, ME 03904

Vendor #61517

KITTERY COMMUNITY CENTER

MP NOR AMOUNTS OVER \$5000 R 180 DAYS

N⁰

nctuded. Details on back

Security

090207

YORK HOSPITAL YORK HOSPITAL 15 HOSPITAL DRIVE YORK, ME 03909

NET AMOUNT DISCOUNT AMOUNT INVOICE AMOUNT INVÓICE NUMBER INVOICE DATE P.O. NUMBER 10,000.00 ,00 10,000.00 DEC 2021 12/01/2021 500 Council Approval Africance Goins into scholarship Acct MH correl 10,000.00 00, 10,000.00 Tolals: PAYMENT AMT: 10,000.00

Rice Public Library Corporation

December 17, 2021

Dear Kittery Town Council:

Please accept this gift of \$85,000 from the Rice Public Library Corporation.

This gift includes a \$25,000 grant from the Davis Foundation, which is to be used exclusively for purchasing AV Technology for the Community Room, and donations totaling \$60,000 from a variety of individuals who have collectively sponsored the following spaces (approved at your December 13 meeting):

- Children's Circulation Desk & Story Time Area:
- 2nd Floor Quite Study/Travel Collection Room:

Thank you for your support of the Rice Public Library and this wonderful expansion and renovation project.

Best regards-

Jonne Fallon,

Dianne Fallon Rice Library Campaign Chair

Cc: Rachel Dennis, RPLC President Lee Perkins, Director, Rice Public Library

TOWN COUNCIL GOALS 2022

Council Conduct

- Continue to conduct Council business respectfully as we work toward consensus and capitalize on our experiences and diversity
- Work to keep the demands we place on the Town Manager and her staff at a manageable level and maintain an open line of communication with the Manager regarding questions and demands

Affordability

- Increase housing stock for those meeting affordability guidelines:
 - Support proposed zoning changes to make developing affordable housing more cost competitive (3.3, 4.1, 4.2, 8.5)
 - Direct funding, where appropriate, to the Housing Fund (4.1, 4.2)
- Promote weatherization for low-income residents (4.1, 4.2, 9.2, 9.3)
- Investigate options for tax relief for low-income property owners and develop a plan for implementation and funding (4.1, 4.2)

Community

- Develop a plan to review and change, where necessary and appropriate, Town ordinances, policies, and practices to assure fairness, equity, and inclusion for all Kittery residents and visitors. Establish a Council Committee to this end, working with the Town Manager to identify a process, experts, and resources to assist. (7.1)
- Continue implementation of plans to control traffic, reduce speeds in Kittery neighborhoods, including:
 - Implementation of JLUS recommendations with respect to public transportation and remote satellite parking (5.1, 5.4)
 - Implementation of bike/ped master plan recommendations (5.2, 5.3)
- Assess Memorial Field for potential improvements that will support the demand for high quality playing fields (2.2,7.2)
- Expand use of social media to communicate with residents, business owners, and visitors (7.1)
- Increase citizen involvement in Town governance

Climate Resilience

- Support development of a comprehensive Kittery Climate Action Plan (9.1, 9.2)
- Create a climate resilience reserve fund (9.1, 9.2)
- Support ordinances to protect the shoreland zone (8.1, 8.2)

Fiscal Responsibility and Town Services

- Adopt a budget that is progressive, responsible, responsive to community expectations and needs (7.4)
- Investigate costs, benefits, and effectiveness of:
 - o growing the full-time Fire Department (7.3)
 - increasing the Police embedded social worker program to full-time status (7.3)
- Encourage the Town Manager's continued assessment of the effectiveness of Town service delivery (7.1)

TOWN MANAGER GOALS 2022

Support Council's efforts to implement the Comprehensive Plan 5 Year Action Plan (see Council Goals)

Support long term planning and growth management objectives:

- Obtain funding to advance JLUS implementation strategies including micro- and masstransit, housing, and communication with PNSY
- Propose and implement a property surplus strategy for 2 Walker
- Identify programs, grants, and property acquisitions that retain or increase working waterfront access
- Complete Gorges Road expansion project and implement surplus strategy for Walker Street Fire Station
- Complete land agreement and transfer of Taylor Building

Climate Action

• Propose and implement additional strategies and projects to reduce municipal greenhouse gas emissions

Social and Racial Equity and Justice

• Develop strategies to attract a diverse candidate pool for town positions, boards, commissions, and committees

Enhance Financial Stability

- Produce a 2023 budget that seeks to respond to service expectations of the community, and appropriately addresses unmet needs and responds to growing inflation
- Develop and implement enhancements to the investment strategies to maximize returns without significantly increasing risk

Enhance Municipal Services

- Increase Town's presence on social media platforms
- Implement tech-based interactive resident request system (SeeClickFix)
- Launch Police Citizens Academy and expand to other areas as appropriate
- Implement short-term recommendations from Bike/Ped Master Plan
- Launch five-year strategic planning effort for Library
- Advance the integration of general assistance with our local social service agencies
- Working with partners, develop a plan to reestablish a preschool/daycare program at the KCC

TOWN OF KITTERY 200 Rogers Road, Kittery, ME 03904 Telephone: 207-475-1329

REPORT TO TOWN COUNCIL

Meeting Date: January 10, 2022

From: Kendra Amaral, Town Manager

Subject: Title 2 Amendments – Paid Time Off

Councilor Sponsor: Chairperson Judy Spiller

OVERVIEW

This proposal is to make two changes to the paid-time-off allocations for non-union staff specifically 1) add Juneteenth to the list of observed holidays, and 2) achieve parity on personal days with union staff members.

Juneteenth was made a national holiday in 2021. The ordinance amendment will codify the observation of the holiday for staff.

The Town is working to bring paid-time-off allocations more in line with private industry standards. This amendment will bring non-union staff members in line with union members, and also ensure compliance with State law requiring every employer grant a certain amount of unrestricted paid time off for every 40 hours worked.

PROPOSED SOLUTION/RECOMMENDATION

Adopt the ordinance amendment as proposed.

ATTACHMENTS

- Draft Title 2 Paid-Time-Off Amendment
- Draft Title 2 Paid-Time-Off Enactment

TITLE 2 ADMINISTRATIVE CODE HOLIDAYS & PERSONAL DAYS

Amend Holidays to add Juneteenth and increase the number of personal days as follows:

- 1 § 2.3.16 Basic workweek; fringe benefits.
- 2 E. Legal holidays.
- 3 (1) Town employees are entitled to 12 legal holidays. The 12 holidays are New Year's Day, Martin Luther
- 4 King Day, Presidents Day, Patriots Day, Memorial Day, <u>Juneteenth</u>, Independence Day, Labor Day,
- Columbus Day, Veterans Day, Thanksgiving Day, Christmas Day. Town employees are entitled to-and
 three personal days.
KITTERY TOWN CODE TITLE 2 PAID TIME OFF

1 AN ORDINANCE relating to the municipality's authority for Town governance to give due and

2 proper attention to its many demands pursuant to the Town Charter, Federal law, and Maine

3 Revised Statutes, and more particularly where set forth in Maine Revised Statutes Title 30-A,

- 4 Municipalities and Counties.
- 5 **WHEREAS,** the Kittery Town Council is authorized to enact this Ordinance, as specified in

6 Sections 1.01 and 2.07(3) of the Town Charter; 30-A MRS §3001, pursuant to its powers that

7 authorize the town, under certain circumstances, to provide for the public health, welfare,

8 morals, and safety, and does not intend for this Ordinance to conflict with any existing state or

- 9 federal laws; and
- 10 WHEREAS, the Town Council seeks update the paid time off provisions for staff governed by
- 11 Title 2.3 Personnel System including adding the new federal holiday Juneteenth and increasing
- 12 the number of personal days to three;
- 13 NOW THEREFORE, IN ACCORDANCE WITH TITLES 30-A MRS §3001 AND TOWN

14 CHARTER §2.14, THE TOWN OF KITTERY HEREBY ORDAINS AMENDMENT TO TITLE 2

- 15 OF THE TOWN CODE, AS PRESENTED.
- 16 **INTRODUCED** and read in a public session of the Town Council on the _____ day of _____,
- 17 20____, by:______ {NAME} Motion to approve by Councilor
- 18 _____ {NAME}, as seconded by Councilor _____ {NAME} and
- 19 passed by a vote of _____.
- 20 **THIS ORDINANCE IS DULY AND PROPERLY ORDAINED** by the Town Council of Kittery,
- 21 Maine on the _____ day of _____, 20___, {NAME}, _____, Chairperson
- 22 Attest: {NAME}, _____Town Clerk

TOWN OF KITTERY 200 Rogers Road, Kittery, ME 03904 Telephone: 207-475-1329

REPORT TO TOWN COUNCIL

Date: January 10, 2022

From: Kendra Amaral, Town Manager

Subject: Various Title References - Title 16 Recodification Project

Councilor Sponsor: Chairperson Judy Spiller

SUMMARY

The recodification of Title 16 was launched in January of 2019 with the goal of ensuring the Land Use Code reflects the professional, transparent, and informative service approach desired in the Comprehensive Plan. After two years, countless meetings, line-by-line reviews, and Planning Board recommendation to adopt, the recodification is ready for its final review and vote by the Council.

If adopted, the recodification of Title 16 will result in renumbering of the sections and subsections of the Chapter. This will create incorrect references elsewhere in the Town Code to specific sections and subsections of Title 16.

The proposed ordinance amendments correct the references to the new sections and subsection numbers of the recodified Title 16.

PROPOSED SOLUTION/RECOMMENDATION

Approve the amendments as proposed if the recodification is adopted.

ATTACHMENTS

- Draft Title 5 and Title 13 Amendments
- Draft Title 5 and Title 13 Enactment

VARIOUS TITLES TITLE 16 REFERENCES RECODIFICATION PROJECT

- Amend the following Chapters and Sections to reference the appropriate section of the recodified
 Title 16:
- 34 Chapter 5.7 Sidewalk Sales
- 5 § 5.7.12 Permits required for signs, tents and other structures.
- B. All temporary signs and banners must be permitted by the Code Enforcement Officer in accordance with
 Article X of Chapter 16.8§16.5.23. One temporary sign or banner per participating site in addition to
 that normally allowed may be permitted for each sidewalk sales event. Sign applications, accompanied
 by application fees, for such additional signage are to be made to the Code Enforcement Officer well in
- 10 advance of the actual sidewalk sales event.

11 Chapter 5.9 Viewing Booths in Adult Entertainment Establishments

12 § 5.9.1 **Definitions.**

- 13 Except as specifically defined in this section, the words and phrases used in this chapter carry their
- 14 customary dictionary meanings unless otherwise clearly indicated by the text.

15 ADULT ENTERTAINMENT ESTABLISHMENT

16 Defined as set forth in $\frac{16.3.2}{9}$ for the Town Code.

17 VIEWING BOOTH

- 18 Any booth, cubicle, room or stall within the premises of an adult entertainment establishment used to
- 19 view or display any adult-oriented materials, including but not limited to films, movies, photographs,
- 20 books, magazines, slides, periodicals or other printed matter, DVDs, videocassettes or reproductions of
- 21 any kind, or for the use of any devices or paraphernalia which are designed for or used in connection
- 22 with specified sexual activities as defined in $\frac{16.3.2}{9}$ of the Town Code.
- 23 Chapter 5.10 Use of the Public Way

24 § 5.10.3 **Definitions.**

Terms, phrases and words in this chapter have the meanings given herein or, if not defined, are given their
 ordinary accepted meanings:

27 SITE FURNISHINGS

- 28 Those elements and site amenities that are shown on the sketch plan that accompanies the use of the
- 29 public way permit application and approved by the Code Enforcement Officer (CEO) and Town
- 30 Planner. Such elements may include, but are not limited to: benches, tables, chairs, umbrellas, bicycle
- 31 racks, and trash receptacles. Excluded elements include: vending and soda machines, refrigerated
- 32 cabinets, ice machines, freezer chests and other like appliances. There may be no signage and/or
- 33 advertising associated with the site furnishings unless as reviewed and approved by the CEO and Town
- $34 \qquad Planner per Town Code <u>§16.5.23.A</u> § <u>16.8.10.1</u> et seq.$

35 Chapter 5.12 Short-Term Rental

36 §5.12.6 **Standards**

- 37 F. Parking.
- 38 (1) The owner must provide sufficient on-site parking to serve the residential dwelling unit(s) and the short-
- 39 term rental unit(s) on the property. The total number of on-site parking spaces will be the calculated as
- 40 the number of spaces required for the dwelling unit per $\frac{16.7.11}{F(7)}$ by $\frac{16.8.9.4}{F(7)}$ plus one parking space
- 41 for each short-term rental unit on the property. Tandem parking is permitted.

42 Chapter 5.12 Short-Term Rental

- 43 §5.12.9 Appeal
- 44 A Code Enforcement Officer decision on denial, suspension, or revocation of a license may be appealed to
- 45 the Board of Appeals as provided in $\frac{16.2.12.D}{9}$

46 Chapter 13.1 Sewer Service System

47 §13.1.1.11 Installation of toilet facilities and connection to public sewer required.

- 48 <u>B.</u> <u>A.</u> Owners of all structures with use requiring the disposal of sewage with public sewer located within 49 100 feet of the property line as measured along any public way are required, at their expense, to
- 50 install suitable waste effluent and/or toilet facilities therein, and to connect such facilities directly to
- 51 the public sewer in accordance with the provisions of this chapter, within 90 days after the date of
- 52 official notice to do so. Pursuant to Town Code Title 16, Chapter 16.8, Article VII §16.7.11.B,-
- 53 Sewage Disposal and §16.8.10.D, connection to the public sewer is required for a commercial or
- 54 industrial development or a residential subdivision, where public sewer, within an abutting public
- 55 way, is within 1,000 feet of the property line as measured along said public way.

56 §13.1.4.3 Main Extensions

57 B. Definitions. For the purposes of this article, the following definitions apply:

58 **DWELLING UNIT**

- A room or group of rooms forming a habitable unit for one family with facilities used or intended to be
- 60 used for living, sleeping, cooking, eating, and sanitary facilities. It comprises at least 650 square feet of
- 61 habitable floor space and includes any subcategory definition of dwelling as found in Title 16, §16.3.2 §-
- 62 <u>16.2.2</u> (e.g., inn, accessory dwelling unit).

63 **Chapter 13.2 Sewer Service Decision Appeals**

64 §13.2.2.C (1) Unbuildable parcel appeals.

- 65 C. Initiating an unbuildable parcel appeal.
- 66 (1) Unbuildable parcel appeals are to be filed in accordance with Town Code $\frac{16.2.12}{16.2.12}$ Title 16, $\frac{16.6.5}{16.6.5}$,
- 67 Board of Appeals appeal/request filing procedures. The pertinent provisions of that Code section's protocols
- 68 for the Board to address such appeals apply.

- 69 §13.2.3 Sewer service administrative decision appeals.
- 70 C. Such administrative decision appeals are to be filed in accordance with Town Code <u>§16.2.12</u> Title 16, §
- 71 <u>16.6.5</u>, Board of Appeals appeal/request filing procedures. The pertinent provisions of that Code section's
- 72 protocols for the Board to address such appeals apply.

KITTERY TOWN CODE – VARIOUS TITLES REFERENCE TO RECODIFIED TITLE 16

- 1 **AN ORDINANCE** relating to the municipality's authority for Town governance to give due and
- 2 proper attention to its many demands pursuant to the Town Charter, Federal law, and Maine
- 3 Revised Statutes, and more particularly where set forth in Maine Revised Statutes Title 30-A,
- 4 Municipalities and Counties.
- 5 WHEREAS, the Kittery Town Council is authorized to enact this Ordinance, as specified in
- 6 Sections 1.01 and 2.07(3) of the Town Charter; and 30-A MRS §3001 and §4352, pursuant to its
- 7 powers that authorize the town, under certain circumstances, to provide for the public health,
- 8 welfare, morals, zoning, and safety, and does not intend for this Ordinance to conflict with any
- 9 existing state or federal laws; and
- 10 WHEREAS, the Town of Kittery is enacting a recodification of Title 16 to categorize and
- 11 organize restrictions, standards, and requirements in a manner that is intuitive and
- 12 comprehensive, eliminate redundant terminology and inconsistent use of terminology, simplify
- 13 and clarify application and development review processes, and address long-standing questions
- 14 about multi-jurisdictional review processes; and
- 15 **WHEREAS**, the act of recodifying Title 16 includes renumbering sections and subsections of the 16 Chapter that will result in incorrect references elsewhere in the Town Code; and
- 17 **WHEREAS**, the proposed amendments correct reference elsewhere in the Town Code to the
- 18 new Title 16 sections and subsection numbers established as a result of the recodification.
- 19 NOW THEREFORE, IN ACCORDANCE WITH TITLE 30-A MRS §3001 AND TOWN CHARTER
- 20 §2.14, THE TOWN OF KITTERY HEREBY ORDAINS THE AMENDMENT OF TITLE 5 AND
- 21 TITLE 13, AS PRESENTED.
- 22 **INTRODUCED** and read in a public session of the Town Council on the _____ day of _____,
- 23 20____, by:______ {NAME} Motion to approve by Councilor
- 24 _____ {NAME}, as seconded by Councilor _____ {NAME} and
- 25 passed by a vote of _____.
- 26 **THIS ORDINANCE IS DULY AND PROPERLY ORDAINED** by the Town Council of Kittery,
- 27 Maine on the _____ day of _____, 20___, {NAME}, _____, Chairperson
- 28 Attest: {NAME}, _____Town Clerk

TOWN OF KITTERY 200 Rogers Road, Kittery, ME 03904 Telephone: 207-475-1329

Report to Town Council

Date: January 10, 2022

From: Kendra Amaral, Town Manager

Subject: Title 16 – Marijuana in the Shoreland Overlay Zone

Councilor Sponsor: N/A

SUMMARY

The Town has a policy that allows an applicant to apply for zoning amendments through the Planning Board. This process is typically used in conjunction with a development project that a private property owner or entity is contemplating in Kittery.

The Planning Board received an application to amend Title 16 to allow marijuana businesses in the Shoreland Overlay Zone. It is currently prohibited.

The Planning Board considered the matter at their December 9, 2021 meeting and voted to have their recommendation to the Council be neutral on the matter.

You may view the discussion of the Planning Board through our video archive available at www.kitteryme.gov.

ATTACHMENTS

• Application for Zoning Amendment

TOWN OF KITTERY MAINE TOWN PLANNING AND DEVELOPMENT 200 Rogers Road, Kittery, ME 03904 Telephone: 207-475-1323 Fax: 207-439-6806

Office Use Only	Ap	Application Fee: 3300.00		omitted:	Amount Paid: \$
APPLICANT INFORMATION	NAME PHONE FAX	RNAN T. WARD 267-337-0583		MAILING ADDRESS	61 Bow St. Unit 3 Portsmouth NH 03801

Zoning Amendment Type	Text	\square Map
		L

COMPLETE ONLY THE APPLICABLE SECTIONS BELOW

Amendment to Land Use Code (Text Change)							
The proposed amendment would be:	A new provision to the code	A change to the existing code					
NEW PROVISION TO THE CODE							
Provide proposed ordinance language and code section format and numbering in space below							
Provide a narrative of why the proposed amend hardship this would address.	ment would be beneficial for the Town in the	ne space provided below. Include benefits and					
		nan en					
		an no banang na na ang ang ang ang ang ang ang					
	nakalang na man'n a Veran tangka menana manana kalakalan dari kanakan ya balang ana da kalama na manakan kalang						

ADDITIONS AND MODIFICATIONS TO THE EXISTING CODE						
Code section number to be amended 16.3.2.17						
Proposed amendment language						
16.3.2.17 Shoreland Overlay Zone 02-5L						
(B) Permitted and special exception land use.						
(10) Commercial - 1 Zone (CI)						
(b) Special exception uses.						
(24) Marijuana Retail Store						
Provide a narrative of why the proposed amendment would be beneficial for the Town in the space provided below. Include benefits and hardship this would address.						
Attached.						
Amendment to the Land Use Zoning Map						
Provide a narrative of the proposed change including benefits for the Town, compatibility to the abutting land uses and any supporting information. Also, attach a sketch of the proposed map change with this application.						

y.

Attachment 1- Narrative to change existing code.

Narrative:

67

It was clear from the month's long discussion by both the Planning Board and the City Council that they intended Marijuana Retail Stores to be allowed as a special exception use in the C-1 zone, including areas covered by the Shoreland Overlay Zone. Repeatedly, in discussing their intent regarding appropriate locations for Marijuana Retail Stores, Council Members referenced outlets located with the Shoreland Overlay Zone within the C-1 Zone. Further, there is no legitimate policy rationale for allowing Marijuana Retail Stores in the C-1 Zone but excluding them from the Shoreland Overlay Zone. Retail uses generally are permitted within the Shoreland Overlay Zone within the C-1 Zone. Marijuana Retail Stores, similar to general retail, do not have any discharge or generate any pollutant that would warrant excluding them from the Shoreland Overlay Zone. The wastewater, sewage, and refuse generated by a marijuana retail store—employee and customer use of the restrooms, daily cleaning and sanitizing, and shipping and packaging materials and waste generated by employee daily activities (e.g., throwing away a snack wrapper)—is identical to that of a general retail store. In fact, a Marijuana Retail Store siting in the Shoreland Overlay Zone within the C-1 zone would most likely be occupying a space that was formerly general retail with access to town water and sewage and regular disposal by a waste disposal company. However, in what appears to have been an error, the final ordinance that was voted on by the Kittery City Council on August 7, 2021, failed to include Marijuana Retail Stores as a special exception use in the Shoreland Overlay Zone within the C-1 Zone. As a result, people who had been following the Council and Planning Board discussion for months and making decisions, including decisions to enter into leases, in reliance on the clear intent of the Council are being foreclosed from even participating in the lottery for the three retail store licenses. An amendment is necessary to effectuate the intent of the Planning Board and City Council.

Sean R. Turley sturley@mpmlaw.com

December 7, 2021

Sent by email Dutch Dunkelberger, Chair Town of Kittery Planning Board 200 Rogers Road Kittery, Maine 03904

Re: Proposed Zoning Text Amendment to Allow a Marijuana Retail Store as a Special Exception Use Within the Route 1 Commercial Zone and Shoreland Overlay Zone

Dear Chair Dunkelberger,

I write on behalf of my client, Ryan Ward,¹ who operates Arcanna Retail, LLC, a marijuana retail business, in support of his application for a zoning texting amendment to add "Marijuana Retail Store" to the list of "special exception uses" for parcels that are located within the Route 1 Commercial Zone ("C-1") *and* subject to a Shoreland Overlay Zone ("OZ-SL") through a revision to section 16.3.2.17.B(10)(b) of the Town of Kittery Code (the "Code"). The Board, on November 18, 2021, calendared this matter for a public hearing at its upcoming meeting, which is set for December 9, 2021.²

As this Board is well aware, the Town of Kittery adopted revisions to Title 5 and Title 16 of the Code to allow for limited "Marijuana Operations" within its borders through a vote of the Town Council on August 9, 2021 (the "Marijuana Ordinance").³

The Marijuana Ordinance allows for a "Marijuana Business" in the C-1, C-2 and C-3 zones as one of several "special exception uses."⁴ It further limits the establishment of a "Marijuana Retail Store" to one per commercial zone, for a total of three licensees, which were selected earlier this fall through a lottery system.⁵ The Marijuana Ordinance did not modify any language in the Code pertaining to the OZ-SL.

⁴ Marijuana Ordinance § 5 (modifying Code §§ 16.3.2.11(1)–(3)).

¹ Ward is potential lessee of property in the C-1. Amy Stern, who owns property within the C-1 located at 336 Route 1, supports this request.

² The Board and the Town Council are required to hold a public hearing before any amendment to the zoning ordinance is adopted by the Town. Code § 16.1.9.

³ The Marijuana Ordinance became effective on September 8, 2021. Although the amendments and revisions passed by the Town Council are not an "ordinance" *per se* because they were not organized in a separate, distinct section of the Code, discussing these changes as an ordinance makes sense given that they established a comprehensive scheme for regulating and permitting marijuana businesses.

 $^{^5}$ Marijuana Ordinance § 1 (amending Title 5 of the Code to include § 5.11.9).

When a use is not listed in Code as either permitted or as a special exception, it is prohibited.⁶ Consequently, marijuana businesses, including, but not limited to, marijuana retail stores cannot be operated within *any* portion of a commercial zone that is burdened by the OZ-SL, even though the Marijuana Ordinance expressly authorized marijuana businesses as a special exception use in those base zones.

Mr. Ward's proposed amendment is limited to expanding the scope of locations available for the single "Marijuana Retail Store" approved for the C-1 to include the parts of that zone subject to the OZ-SL. This would be accomplished by adding "Marijuana Retail Store" as special exception use in the OZ-SL. No other change to the Code would be necessary because a "Marijuana Retail Store" is already a special exception use in the C-1 because it falls into the general category of "Marijuana Business."⁷

The C-1 is shown below as a green overlay on the Town's Zoning map with the portion of the C-1 encumbered by the OZ-SL depicted in blue.

Figure 1: Colorized portion of the Town's Zoning Map dated May 24, 2010 depicting the C-1/OZ-SL

⁶ Code § 16.3.1.6.

⁷ Code § 16.3.2.11(1)(p) (listing "Marijuana Business, except a Marijuana Cultivation Facility," as a special exception use in the C-1).

As is evident, a significant portion of the C-1 is burdened by the OZ-SL, which means there is a *de facto* prohibition on the use of a parcel to operate a marijuana retail store on a substantial number of properties located within the C-1. Indeed, out of the twenty-six (26) properties along the Route 1 corridor in the C-1, only seven parcels are not subject to the OZ-SL (the "Permitted Parcels") while the owners of the remaining nineteen lots (the "Prohibited Parcels) are barred from requesting a special use exception for a marijuana business, generally, or a marijuana retail store, specifically.

Permitted Parcels								
Tax Lot #	Street Address	Tax Lot #	Street Address					
47-4	375 US Route 1	38-13	306 US Route 1					
47-3A	355 US Route 1	38-1	335 US Route 1					
47-3	8 Dexter Lane	30-41	275 US Route 1					
47-1	345 US Route 1							

	Prohibited Parcels ⁸								
Tax Lot #	Street Address	Tax Lot #	Street Address						
47-23A	384 US Route 1	38-12	326 US Route 1						
47-23	380 US Route 1	38-13A	318 US Route 1						
47-24A	366 US Route 1	38-14	294 US Route 1						
47-24	360 US Route 1	31-6	284 US Route 1						
47-25A	350 US Route 1	31-4	286 US Route 1						
47-25	340 US Route 1	31-2	290 US Route 1						
38-2	301 US Route 1	30-44	283 US Route 1						
38-11	336 US Route 1	22-14	230 US Route 1						
38-7	325 US Route 1	22-13	240 US Route 1						
38-5	315 US Route 1								

Ultimately, close to 70% of the landowners along the portion of Route 1 corridor through the C-1 cannot operate a marijuana business or lease space for that purpose, despite the fact that a marijuana business is a special use exception in the base zone.

There is a substantial disconnect, then, between what the Town Council purported to do through adoption of the Marijuana Ordinance (i.e., to provide for marijuana businesses in the C-1 as a special exception use, including a single marijuana retail store) and the net result of its actions (i.e., a

⁸ Lots are listed as "Prohibited Parcels" if some portion of the lot is encumbered by the OZ-SL. I did not determine whether the commercial building now existing on each parcel is itself within the overlay zone. Since I could not locate any language in the Code specifying what zoning regulations apply when a property is not entirely within an overlay zone, I did not endeavor to differentiate between owners of properties in the C-1/OZ-SL that could potentially request a special use exception for a marijuana retail store (because only part of their property is within the OZ-SL) and those who absolutely could not (because their properties are entirely within the OZ-SL).

prohibition on a significant percentage of commercial property owners within the C-1 from submitting a request for a marijuana retail store as a special exception use).

This outcome is particularly perplexing and frustrating to Mr. Ward because the Town Council never even discussed the OZ-SL in its deliberations on the Marijuana Ordinance.⁹

Given that the record is devoid of any reference to the OZ-SL, it is abundantly clear that the Town imposed a prohibition on marijuana businesses, in general, and marijuana retail stores, in particular, on most commercial properties in the C-1 by accident—not as a result of a deliberate process or as a solution to any specific concerns with a marijuana retail store being located in the OZ-SL.

Even if the Town Council had at some point considered whether a prohibition on marijuana businesses in the OZ-SL was warranted, it would have discovered that any such limitation on this use of land would be utterly arbitrary in light of the express purpose of the OZ-SL:

[T]o further the maintenance of safe and healthful conditions; to prevent and control water pollution; to protect fish spawning grounds, aquatic life, bird and other wildlife habitat; to protect buildings and lands from flooding and accelerated erosion; to protect archaeological and historic resources, to protect commercial fishing and maritime industries; to protect freshwater and coastal wetlands; to control building sites, placement of structures and land uses; to conserve shore cover and visual as well as actual points of access to inland and coastal waters; to conserve natural beauty and open space; and to anticipate and respond to the impacts of development in shoreland areas.¹⁰

When the Town Council discussed the draft Marijuana Ordinance at its July 19, 2021 workshop, Councilor Mary Gibbons Stevens astutely noted that the Town needed to put in place rules that serve the public good and avoid arbitrary, burdensome procedures, stating "[w]e want to make sure that whatever limits that we're putting actually have a . . . purpose for the Town."¹¹

Here, it is beyond dispute that there is no rational basis for prohibiting marijuana retail stores within the OZ-SL when they are authorized in the C-1 because, in every respect, the use of a space to sell marijuana is identical to the operation of any other retail establishment.¹² The sale of marijuana

⁹ At the November 18th meeting, members of the Board asked whether the prohibition on marijuana businesses operating on parcels within the C-1 and OZ-SL was the result of a purposeful decision by the Town Council or an inadvertent oversight. The records of the meetings and workshop held by the Town Council support the latter conclusion. The Town Council discussed various drafts of the Marijuana Ordinance at its June 28th and August 9th meetings and at the workshop it conducted on July 19th. No member of the council *ever* mentioned the OZ-SL. Instead, the discussions centered around whether the Town should adopt buffers to prevent clustering of marijuana retail stores; if the Town should reduce the total number of licenses from five to three; which zones were best suited to accommodate marijuana retail stores; whether more than one licensee should be allowed in the same zone; and if the Town should put in place a first-come-first-serve system or a lottery system.

¹⁰ Code § 16.3.2.17.A. This language mirrors the minimum shoreland zoning requirements set forth in 06-096 CMR ch. 1000. Those regulations place no limitation on the existence of marijuana retail operations within the state's shoreland overlay zones.

¹¹ The timestamp for Councilor Stevens comment on the recording of the workshop is 58:30.

¹² Retail uses of property are "permitted uses" within the C-1. Code § 16.3.2.11.B(1)(g).

generates no additional pollutants or byproducts than any other retailer existing within in the OZ-SL. The offering of marijuana for sale does not pose any additional risk to nearby waterways, specifically, or the environment, generally. Even the visual and aesthetic impact of a store selling marijuana is identical to that of neighboring retailers.

The current regulatory scheme, then, is arbitrary and unfairly penalizes properties owners within the C-1 who may decide to request a special use exception to operate a "Marijuana Retail Store" or to offer their space for lease for that purpose.

To remedy this apparent error, Mr. Ward has put forward a precise, careful solution. He asks only that "Marijuana Retail Store" be listed as a special exception use in the C-1/OZ-SL through an amendment to section 16.3.2.17.B(10)(b) of the Code. This text amendment would not (a) increase the total number of marijuana retail stores allowed under the Marijuana Ordinance; (b) expand the area in which marijuana retail stores may be located in other commercial zones; (c) allow for marijuana businesses, as a class, to be located within the portions of the C-1 subject to the OZ-SL; or (d) change "Marijuana Retail Store" from a special exception use to a permitted use, which means that the Board will maintain its authority to deny a request for a special exception use when the facts before it warrant that decision.¹³

Because Mr. Ward's proposed text amendment is narrowly tailored to address an arbitrary limitation on the location of a marijuana retail store within the C-1 that resulted from an inadvertent oversight on the part of the Town Council, Mr. Ward respectfully asks that the Board support the proposed text amendment to add a "Marijuana Retail Store" to the list of "special exception uses" in the portions of the C-1 burdened by the OZ-SL by amending 16.3.2.17.B.10.b of the Code.

I look forward to appearing with Mr. Ward at the Board's December 9 public hearing on this matter and the future hearing before the Town Council. In the interim, please reach out if any questions or concerns arise.

Best Regards,

RTorley

Sean R. Turley, Bar No. 6351 sturley@mpmlaw.com

MURRAY PLUMB & MURRAY 75 Pearl Street, P.O. Box 9785 Portland, Maine 04104-5085 (207) 773-5651

¹³ Code § 16.1.4.B(6)(b) ("The Board is to ... [h]ear and decide ... special exception use requests").

STATE OF MAINE DEPARTMENT OF ADMINISTRATIVE AND FINANCIAL SERVICES BUREAU OF ALCOHOLIC BEVERAGES AND LOTTERY OPERATIONS DIVISION OF LIQUOR LICENSING AND ENFORCEMENT

Application for an On-Premises License

All Questions Must Be Answered Completely. Please print legibly.

Div	ision Use (Only	
License No:			
Class:	By:		
Deposit Date:			
Amt. Deposited	1:		
Payment Type:			
OK with SOS:	Yes 🗆	No 🗆	

Section I: Licensee/Applicant(s) Information; Type of License and Status

sical Location: X V. S. RONE 1, STEC, KINGY ME370 ling address, if different:
sical Location: <u>XV.S. RONE 1, STEC</u> , WINGYMEST ling address, if different:
<u>X</u> U.S. <u>ROVIE</u> 1, STEC, <u>WITGMMED</u> ling address, if different:
ling address, if different:
nil Address:
VANQUEBREWERY.COM
iness Telephone # Fax #:
7.994.3911
ne Seller Certificate # or Sales Tax #:
027382000
bsite address:
FBREWERY. (OM
upgande?)
Expected Start date:
al Expiration Date: 1/10/21

\$ 0

Food: Beer, Wine or Spirits: $\partial(\Omega)$, $\partial(\Omega)$ Guest Rooms:

3. Please indicate the type of alcoholic beverage to be sold: (check all that apply)

Malt Liquor (beer)	\bowtie	Wine	K	Spirits
--------------------	-----------	------	---	---------

.

4. Indicate the type of license applying for: (choose only one)

		Restaurant (Class I, II, III, IV)		Class A (Class	Class A Restaurant/Lounge (Class XI)		X	Class A (Class)	A Lounge X)	
		Hotel (Class I, II, III, IV)		Hotel (Class	Hotel – Food Optional (Class I-A)			Bed & (Class	Breakfast V)	
		Golf Course (included optic (Class I, II, III, IV)	onal licen	ses, pleas	se check if apply)	Auxilia	ry		Mobile Cart	
		Tavern (Class IV)			Other:					
		Qualified Caterer						aterers (Only)	
		Refer	r to Sectio	on V for i	he License Fee Schedule of	n page 9				
5.	5. Business records are located at the following address:									
	<u> 700</u>	US TOUTE . I, K	1 (1 (9)	ι <u>γ</u> Ν	E US 10-1					
6.	Is the	licensee/applicant(s) citize	ens of th	ne Unite	ed States?	Ø	Yes		No	
7.	Is the	licensee/applicant(s) a res	ident of	the Sta	te of Maine?	Ø	Yes		No	
	ЪT.	OTE: Anylinents that ar	a mat ai	41	f the United States a	to requi	rod to	file for	the license as	

NOTE: Applicants that are not citizens of the United States are required to file for the license as a business entity.

- 8. Is licensee/applicant(s) a business entity like a corporation or limited liability company?
 - If Yes, complete Section VII at the end of this application Ø Yes No
- 9. For a licensee/applicant who is a business entity as noted in Section I, does any officer, director, member, manager, shareholder or partner have in any way an interest, directly or indirectly, in their capacity in any other business entity which is a holder of a wholesaler license granted by the State of Maine?
 - Ø, No Yes
 - Not applicable licensee/applicant(s) is a sole proprietor

5

10. Is the licensee or applicant for a license receiving, directly or indirectly, any money, credit, thing of value, endorsement of commercial paper, guarantee of credit or financial assistance of any sort from any person or entity within or without the State, if the person or entity is engaged, directly or indirectly, in the manufacture, distribution, wholesale sale, storage or transportation of liquor.

	Yes	\bowtie	No				
If yes	s, please	provi	de details:	 	 	 	<u></u>
				 <u>, , , , , , , , , , , , , , , , , , , </u>	 	 	

11. Do you own or have any interest in any another Maine Liquor License? \Box Yes 🛛 No

If yes, please list license number, business name, and complete physical location address: (attach additional pages as needed using the same format)

Name of Business	License Number	Complete Physical Address

12. List name, date of birth, place of birth for all applicants including any manager(s) employed by the licensee/applicant. Provide maiden name, if married. (attach additional pages as needed using the same format)

Full Name			OB	Place of Birth		
Prinick Rowad		4/2	5/1975	COLUMBIA, MD, USA		
Micotelle Nowan		7/24	1975	OLTIO, USA		
FREDERICK PERRY	_,	8/14/	1940	Pontsmouth, Nrt		
Residence address on all the above for previous Name Add Printice Noward Name Add MICHCIE NOWAR Name Add FRED PERPY Add	5 years ^{dress:} 9 · No ^{dress:} 9 · No ^{dress:} 32 B dress:	DWANS WANS OWNEG	WAY, WAY, 2 S?.	КЛІЕЛУ МЕ 03904 КЛІБЛУ МЕ 03904 ВЛооксі́не МА		

13. Will any law enforcement officer directly benefit finar	ncially from this license, if issued?
\Box Yes \bowtie No	
If Yes , provide name of law enforcement officer as	nd department where employed:
14. Has the licensee/applicant(s) ever been convicted of at the United States?□ Yes X No	ny violation of the liquor laws in Maine or any State of
If Yes, please provide the following information format.	and attach additional pages as needed using the same
Name:	Date of Conviction:
Offense:	Location:
Disposition:	
15. Has the licensee/applicant(s) ever been convicted o violations, in Maine or any State of the United States?If Yes, please provide the following information format.	f any violation of any law, other than minor traffic \Box Yes $\overleftarrow{\mathbf{x}}'$ No and attach additional pages as needed using the same
 15. Has the licensee/applicant(s) ever been convicted o violations, in Maine or any State of the United States? If Yes, please provide the following information format. 	f any violation of any law, other than minor traffic \Box Yes $\overleftarrow{\mathbf{x}'}$ No and attach additional pages as needed using the same Date of Conviction:
 15. Has the licensee/applicant(s) ever been convicted o violations, in Maine or any State of the United States? If Yes, please provide the following information format. Name: Offense: 	f any violation of any law, other than minor traffic Yes X No and attach additional pages as needed using the same Date of Conviction: Location:
 15. Has the licensee/applicant(s) ever been convicted o violations, in Maine or any State of the United States? If Yes, please provide the following information format. Name: Offense: Disposition: 	f any violation of any law, other than minor traffic Yes X' No and attach additional pages as needed using the same Date of Conviction: Location:
 15. Has the licensee/applicant(s) ever been convicted o violations, in Maine or any State of the United States? If Yes, please provide the following information format. Name:	f any violation of any law, other than minor traffic Yes Y' No and attach additional pages as needed using the same Date of Conviction: Location: quor license? Yes □ No
 15. Has the licensee/applicant(s) ever been convicted o violations, in Maine or any State of the United States? If Yes, please provide the following information format. Name:	f any violation of any law, other than minor traffic Yes X No and attach additional pages as needed using the same Date of Conviction: Location: quor license? X Yes □ No Yes X No
 15. Has the licensee/applicant(s) ever been convicted o violations, in Maine or any State of the United States? If Yes, please provide the following information format. Name:	f any violation of any law, other than minor traffic Yes X No and attach additional pages as needed using the same Date of Conviction: Location: quor license? X Yes I No Yes No Yes No owner:

- 18. If you are applying for a liquor license for a Hotel or Bed & Breakfast, please provide the number of guest rooms available: ______
- 19. Please describe in detail the area(s) within the premises to be licensed. This description is in addition to the diagram in Section VI. (Use additional pages as needed)

SPACE WITH 74BLES FOR 40 PEOPLE. WE ARE LICENSED TO 49	WEH	old ALi	CENSE FOR	LOUR EX	ising -	TASILING	NOUN,	AN	800 Sq FEE	=7
	SDAFE	Wirt	7AB(FS	For 40	DEODLE.	WEA	NE LIC	ENSED	70 49	
INSCHE. WE HAVE A GOD SO FOOT ADDADUED + ENCLOSED DATIO	1 ASCH	F. WE	HALLE A	300 ca For	1 4000 pt	IFD + FA	ILLOSED	DATIO)	

20. What is the distance from the premises to the <u>nearest</u> school, school dormitory, church, chapel or parish house, measured from the main entrance of the premises to the main entrance of the school, school dormitory, church, chapel or parish house by the ordinary course of travel?

Name: <u>Spruce</u>	CREER coluncit	
Distance: 1.5	MILES	

Section II: Signature of Applicant(s)

By signing this application, the licensee/applicant understands that false statements made on this application are punishable by law. Knowingly supplying false information on this application is a Class D Offense under Maine's Criminal Code, punishable by confinement of up to one year, or by monetary fine of up to \$2,000 or by both.

Please sign and date in blue ink.

_____ Dated: /

Signature of Duly Authorized Person

PAINICK C ROWAN

Printed Name Duly Authorized Person

Signature of Duly Authorized Person

Printed Name of Duly Authorized Person

Section III: For use by Municipal Officers and County Commissioners only

The undersigned hereby certifies that we have complied with the process outlined in 28-A M.R.S. §653 and approve this on-premises liquor license application.

Dated:						
Who is approving this application?	□ Municipal Officers of					
	County Commissioners of	County				

□ Please Note: The Municipal Officers or County Commissioners must confirm that the records of Local Option Votes have been verified that allows this type of establishment to be licensed by the Bureau for the type of alcohol to be sold for the appropriate days of the week. Please check this box to indicate this verification was completed.

Signature of Officials	Printed Name and Title
	· · · ·

This Application will Expire 60 Days from the date of Municipal or County Approval unless submitted to the Bureau

Included below is the section of Maine's liquor laws regarding the approval process by the municipalities or the county commissioners. This is provided as a courtesy only and may not reflect the law in effect at the time of application. Please see <u>http://www.mainelegislature.org/legis/statutes/28-A/title28-Asec653.html</u>

§653. Hearings; bureau review; appeal

1. Hearings. The municipal officers or, in the case of unincorporated places, the county commissioners of the county in which the unincorporated place is located, may hold a public hearing for the consideration of applications for new on-premises licenses and applications for transfer of location of existing on-premises licenses. The municipal officers or county commissioners may hold a public hearing for the consideration of requests for renewal of licenses, except that when an applicant has held a license for the prior 5 years and a complaint has not been filed against the applicant within that time, the applicant may request a waiver of the hearing.

A. The bureau shall prepare and supply application forms.

Section V: Fee Schedule

<u>Filing fee required</u>. In addition to the license fees listed below, a filing fee of \$10.00 must be <u>included</u> with all applications.

<u>Please note:</u> For Licensees/Applicants in unorganized territories in Maine, the \$10.00 filing fee must be paid directly to County Treasurer. All applications received by the Bureau from licensees/applicants in unorganized territories must submit proof of payment was made to the County Treasurer together with the application.

<u>Class</u>	of License	Type of liquor/Establishments included	Fee
Class	This class incl Dining Cars; C Caterers	For the sale of liquor (malt liquor, wine and spirits) udes: Airlines; Civic Auditoriums; Class A Restaurants: C Jolf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Ten	\$ 900.00 lubs with catering privileges; nis Clubs; Vessels; Qualified
Class	I-A This class incl	For the sale of liquor (malt liquor, wine and spirits) udes only hotels that do not serve three meals a day.	\$1,100.00
Class	II This class inc Dining Cars; (For the Sale of Spirits Only ludes: Airlines; Civic Auditoriums; Class A Restaurants; Golf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Ten	\$ 550.00 Clubs with catering privileges; mis Clubs; and Vessels.
Class	III This class inc Dining Cars; (Pool Halls; an	For the Sale of Wine Only ludes: Airlines; Civic Auditoriums; Class A Restaurants; Golf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Ten d Bed and Breakfasts.	\$ 220.00 Clubs with catering privileges; nis Clubs; Restaurants; Vessels;
Class	IV This class inc Dining Cars; (Pool Halls; an	For the Sale of Malt Liquor Only Judes: Airlines; Civic Auditoriums; Class A Restaurants; Golf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Tem Id Bed and Breakfasts.	\$ 220.00 Clubs with catering privileges; nis Clubs; Restaurants; Taverns;
Class	III and IV This class inc Dining Cars;	For the Sale of Malt Liquor and Wine Only Judes: Airlines; Civic Auditoriums; Class A Restaurants; Golf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Ten	\$ 440.00Clubs with catering privileges;nis Clubs; Restaurants; Vessels;

- Pool Halls; and Bed and Breakfasts.
- Class V For the sale of liquor (malt liquor, wine and spirits) This class includes only a Club without catering privileges.
- Class X For the sale of liquor (malt liquor, wine and spirits) This class includes only a Class A Lounge
- Class XI For the sale of liquor (malt liquor, wine and spirits) This class includes only a Restaurant Lounge

\$1,500.00

Section VI Premises Floor Plan

In an effort to clearly define your license premise and the areas that consumption and storage of liquor authorized by your license type is allowed, the Bureau requires all applications to include a diagram of the premise to be licensed.

Diagrams should be submitted on this form and should be as accurate as possible. Be sure to label the following areas: entrances, office area, coolers, storage areas, display cases, shelves, restroom, point of sale area, area for on-premise consumption, dining rooms, event/function rooms, lounges, outside area/decks or any other areas on the premise that you are requesting approval. Attached an additional page as needed to fully describe the premise.

ATTACHED

Section VII: Required Additional Information for a Licensee/Applicant for an On-Premises Liquor License Who are Legal Business Entities

Questions 1 to 4 of this part of the application must match information in Section I of the application above and match the information on file with the Maine Secretary of State's office. If you have questions regarding your legal entity name or DBA, please call the Secretary of State's office at (207) 624-7752.

All Questions Must Be Answered Completely. Please print legibly.

- 1. Exact legal name: WOODLAND FARMS BREWGAY, LLC

- 4. If not a Maine business entity, date on which you were authorized to transact business in the State of Maine:
- 5. List the name and addresses for previous 5 years, birth dates, titles of officers, directors, managers, members or partners and the percentage ownership any person listed: (attached additional pages as needed)

		Date of		Percentage of
Name	Address (5 Years)	Birth	Title	Ownership
PATRICK ROWAN	9 NOWANS WAY KITTCHLIME	4/25/1975	PANJNER	51%
MUCHEILE NOWAN	9 ROWANS WAY WATERY ME	7/21/75	PANTNOR	367.
	1. 1	1,11	NON-MANAGING	
FRED PERRY	32 BOWKENST. BROOKLINE MA	8/14/40	PANTNER	13%
			5	
· · · · · · · · · · · · · · · · · · ·				
				<u> </u>

(Ownership in non-publicly traded companies must add up to 100%.)

STATE OF MAINE DEPARTMENT OF ADMINISTRATIVE AND FINANCIAL SERVICES BUREAU OF ALCOHOLIC BEVERAGES AND LOTTERY OPERATIONS DIVISION OF LIQUOR LICENSING AND ENFORCEMENT

Application for an On-Premises License

All Questions Must Be Answered Completely. Please print legibly.

Division Use Only						
License No:						
Class:	By:					
Deposit Date:						
Amt. Deposited	;					
Payment Type:						
OK with SOS:	Yes 🗆	No 🗆				

Section I: Licensee/Applicant(s) Information; Type of License and Status

Legal Business Entity Applicant Name (corporation, LLC):	Business Name (D/B/A):
MIAN NOODLE BAR	518 NOODLE BAR
Individual or Sole Proprietor Applicant Name(s):	Physical Location:
	518 US ROUTE 1, BLDG 1 UNIT 2 KITTERY ME
Individual or Sole Proprietor Applicant Name(s):	Mailing address, if different:
	5 WINTERBROOK CT; YORK, ME 03909
Mailing address, if different from DBA address:	Email Address:
	Kittery518@gmail.com
Telephone # Fax #:	Business Telephone # Fax #:
207-361-7350	207-703-2114
Federal Tax Identification Number:	Maine Seller Certificate # or Sales Tax #:
83-1975584	1203150
Retail Beverage Alcohol Dealers Permit:	Website address:
CAR-2019-12234	

 1. New license or renewal of existing license?
 □
 New
 Expected Start date: 12/10/2020

 X
 Renewal
 Expiration Date: 12/09/2021

2. The dollar amount of gross income for the licensure period that will end on the expiration date above:

Food: \$125,000.00 Beer, Wine or Spirits: \$10,000.00 Guest Rooms: _____

3. Please indicate the type of alcoholic beverage to be sold: (check all that apply)

Malt Liquor (beer) Wine Spirits

4. Indicate the type of license applying for: (choose only one)

	X	Restaurant (Class I, II, III, IV)		Class . (Class	A Restaurant/Lounge XI)		Class A (Class	A Lounge X)
		Hotel (Class I, II, III, IV)		Hotel (Class	– Food Optional I-A)		Bed & (Class	Breakfast V)
		Golf Course (included optic (Class I, II, III, IV)	onal licer	ises, plea	se check if apply) 🛛	Auxiliary		Mobile Cart
		Tavern (Class IV)			Other:			
□ Qualified Caterer □ Self-Sponsored Events (Qualified Caterers Only)					Only)			
	<u>Refer to Section V for the License Fee Schedule on page 9</u>							
5.	Busin	ess records are located at t	the follo	owing a	ldress:			
	518 US ROUTE 1, BLDG 1 UNIT 2 KITTERY ME							
6.	Is the	licensee/applicant(s) citiz	ens of t	he Unite	ed States?	🗙 Yes		No

7.	Is the licensee/applicant(s) a resident of the State of Maine?	\bowtie	Yes		
----	--	-----------	-----	--	--

NOTE: Applicants that are not citizens of the United States are required to file for the license as a business entity.

8. Is licensee/applicant(s) a business entity like a corporation or limited liability company?

\mathbf{X}	Yes		No	If Yes,	complete Section	VII a	at the end	of this	application
--------------	-----	--	----	---------	------------------	-------	------------	---------	-------------

- 9. For a licensee/applicant who is a business entity as noted in Section I, does any officer, director, member, manager, shareholder or partner have in any way an interest, directly or indirectly, in their capacity in any other business entity which is a holder of a wholesaler license granted by the State of Maine?
 - 🗆 Yes 💢 No
 - □ Not applicable licensee/applicant(s) is a sole proprietor

No

10. Is the licensee or applicant for a license receiving, directly or indirectly, any money, credit, thing of value, endorsement of commercial paper, guarantee of credit or financial assistance of any sort from any person or entity within or without the State, if the person or entity is engaged, directly or indirectly, in the manufacture, distribution, wholesale sale, storage or transportation of liquor.

\Box Yes $$ No			
If yes, please provide details:	 		
11. Do you own or have any interest in any another Maine Liquor License?	Yes	X	No

If yes, please list license number, business name, and complete physical location address: (attach additional pages as needed using the same format)

Name of Business	License Number	Complete Physical Address

12. List name, date of birth, place of birth for all applicants including any manager(s) employed by the licensee/applicant. Provide maiden name, if married. (attach additional pages as needed using the same format)

Full N	ame	DOB	Place of Birth
Xue Qin Zheng		01/09/1984	Fuzhou, China
Bing Zhou		07/05/1979	Shanghai, China
Lyle Brown		05/05/1970	Portsmouth, NH
Residence address on all the abo Name Xue Oin Zheng	ove for previous 5 years Address: 3 Perkins D	rive York ME 03909	
Name Bing Zhou	Address: 5 Winterbroo	ok Ct. York, ME 03909	
Name Lyle Brown	Address: 5 Winterbroo	ok Ct. York, ME 03909	
Name	Address:		

15, White any new oncoordinate on our convert many nomenon monor, it is ave.
--

🗆 Yes 💢 No

If Yes, provide name of law enforcement officer and department where employed:

14. Has the licensee/applica	nt(s) e	ver been	convi	cted of any	violation of	of the liquor	laws in Maine	or any State of
the United States?		Yes	\mathbf{X}	No				

If Yes, please provide the following information and attach additional pages as needed using the same format.

Name:	Date of Conviction:
Offense:	Location:
Disposition:	

15. Has the licensee/applicant(s) ever been convicted of any violation of any law, other than minor traffic violations, in Maine or any State of the United States?
Yes X No

If Yes, please provide the following information and attach additional pages as needed using the same format.

Name:	Date	of Conv	iction:		 	
Offense:	Locat	ion:			 	
Disposition:					 ······	
16. Has the licensee/applicant(s) formerly held a Maine	liquor lic	ense?	X	Yes	No	
17. Does the licensee/applicant(s) own the premises?	\varkappa	Yes		No		
If No, please provide the name and address of th	e owner:					

- 18. If you are applying for a liquor license for a Hotel or Bed & Breakfast, please provide the number of guest rooms available: ______
- 19. Please describe in detail the area(s) within the premises to be licensed. This description is in addition to the diagram in Section VI. (Use additional pages as needed)

1500 sq ft. restaurant, 800 sq feet of dining with a bar, open kitchen, 2 Handicapped accessible Toilets,

20. What is the distance from the premises to the <u>nearest</u> school, school dormitory, church, chapel or parish house, measured from the main entrance of the premises to the main entrance of the school, school dormitory, church, chapel or parish house by the ordinary course of travel?

Name: Living Water Fellowship, distant in miles, 1.7 miles

Distance: 1.70

Section II: Signature of Applicant(s)

By signing this application, the licensee/applicant understands that false statements made on this application are punishable by law. Knowingly supplying false information on this application is a Class D Offense under Maine's Criminal Code, punishable by confinement of up to one year, or by monetary fine of up to \$2,000 or by both.

Please sign and date in blue ink.

Dated: 12/23/2021

Xue Zheng Signature of Duly Authorized Person

Signature of Duly Authorized Person

Xue Qin Zheng Printed Name Duly Authorized Person

Printed Name of Duly Authorized Person

Section III: For use by Municipal Officers and County Commissioners only

The undersigned hereby certifies that we have complied with the process outlined in 28-A M.R.S. §653 and approve this on-premises liquor license application.

County Commissioners of _____ County

Please Note: The Municipal Officers or County Commissioners must confirm that the records of Local Option Votes have been verified that allows this type of establishment to be licensed by the Bureau for the type of alcohol to be sold for the appropriate days of the week. Please check this box to indicate this verification was completed.

Signature of Officials	Printed Name and Title

This Application will Expire 60 Days from the date of Municipal or County Approval unless submitted to the Bureau

Included below is the section of Maine's liquor laws regarding the approval process by the municipalities or the county commissioners. This is provided as a courtesy only and may not reflect the law in effect at the time of application. Please see http://www.mainclegislature.org/legis/statutes/28-A/title28-Ascc653.html

§653. Hearings; bureau review; appeal

1. Hearings. The municipal officers or, in the case of unincorporated places, the county commissioners of the county in which the unincorporated place is located, may hold a public hearing for the consideration of applications for new onpremises licenses and applications for transfer of location of existing on-premises licenses. The municipal officers or county commissioners may hold a public hearing for the consideration of requests for renewal of licenses, except that when an applicant has held a license for the prior 5 years and a complaint has not been filed against the applicant within that time, the applicant may request a waiver of the hearing.

A. The bureau shall prepare and supply application forms.

B. The municipal officers or the county commissioners, as the case may be, shall provide public notice of any hearing held under this section by causing a notice, at the applicant's prepaid expense, stating the name and place of hearing, to appear on at least 3 consecutive days before the date of hearing in a daily newspaper having general circulation in the municipality where the premises are located or one week before the date of the hearing in a weekly newspaper having general circulation in the municipality where the premises are located or one week before the date of the hearing in a weekly newspaper having general circulation in the municipality where the premises are located.

C. If the municipal officers or the county commissioners, as the case may be, fail to take final action on an application for a new on-premises license or transfer of the location of an existing on-premises license within 60 days of the filing of an application, the application is deemed approved and ready for action by the bureau. For purposes of this paragraph, the date of filing of the application is the date the application is received by the municipal officers or county commissioners. This paragraph applies to all applications pending before municipal officers or county commissioners as of the effective date of this paragraph as well as all applications filed on or after the effective date of this paragraph. This paragraph applies to an existing on-premises license that has been extended pending renewal. The municipal officers or the county commissioners shall take final action on an on-premises license that has been extended pending renewal within 120 days of the filing of the application.

D. If an application is approved by the municipal officers or the county commissioners but the bureau finds, after inspection of the premises and the records of the applicant, that the applicant does not qualify for the class of license applied for, the bureau shall notify the applicant of that fact in writing. The bureau shall give the applicant 30 days to file an amended application for the appropriate class of license, accompanied by any additional license fee, with the municipal officers or county commissioners, as the case may be. If the applicant fails to file an amended application within 30 days, the original application must be denied by the bureau. The bureau shall notify the applicant in writing of its decision to deny the application including the reasons for the denial and the rights of appeal of the applicant.

2. Findings. In granting or denying an application, the municipal officers or the county commissioners shall indicate the reasons for their decision and provide a copy to the applicant. A license may be denied on one or more of the following grounds:

A. Conviction of the applicant of any Class A, Class B or Class C crime;

B. Noncompliance of the licensed premises or its use with any local zoning ordinance or other land use ordinance not directly related to liquor control;

C. Conditions of record such as waste disposal violations, health or safety violations or repeated parking or traffic violations on or in the vicinity of the licensed premises and caused by persons patronizing or employed by the licensed premises or other such conditions caused by persons patronizing or employed by the licensed premises that unreasonably disturb, interfere with or affect the ability of persons or businesses residing or located in the vicinity of the licensed premises to use their property in a reasonable manner;

D.Repeated incidents of record of breaches of the peace, disorderly conduct, vandalism or other violations of law on or in the vicinity of the licensed premises and caused by persons patronizing or employed by the licensed premises;

D-1. Failure to obtain, or comply with the provisions of, a permit for music, dancing or entertainment required by a municipality or, in the case of an unincorporated place, the county commissioners;

E. A violation of any provision of this Title;

F. A determination by the municipal officers or county commissioners that the purpose of the application is to circumvent the provisions of section 601; and

G.After September 1, 2010, server training, in a program certified by the bureau and required by local ordinance, has not been completed by individuals who serve alcoholic beverages.

3. Appeal to bureau. Any applicant aggrieved by the decision of the municipal officers or county commissioners under this section may appeal to the bureau within 15 days of the receipt of the written decision of the municipal officers or county commissioners. The bureau shall hold a public hearing in the city, town or unincorporated place where the premises are situated. In acting on such an appeal, the bureau may consider all licensure requirements and findings referred to in subsection 2.

A. Repealed

B. If the decision appealed from is an application denial, the bureau may issue the license only if it finds by clear and convincing evidence that the decision was without justifiable cause.

4. Repealed

5. Appeal to District Court. Any person or governmental entity aggrieved by a bureau decision under this section may appeal the decision to the District Court within 30 days of receipt of the written decision of the bureau.

An applicant who files an appeal or who has an appeal pending shall pay the annual license fee the applicant would otherwise pay. Upon resolution of the appeal, if an applicant's license renewal is denied, the bureau shall refund the applicant the prorated amount of the unused license fee.

Section IV: Terms and Conditions of Licensure as an Establishment that sells liquor for on-premises consumption in Maine

- The licensee/applicant(s) agrees to be bound by and comply with the laws, rules and instructions promulgated by the Bureau.
- The licensee/applicant(s) agrees to maintain accurate records related to an on-premise license as required by the law, rules and instructions promulgated or issued by the Bureau if a license is issued as a result of this application.
 - The licensee/applicant(s) authorizes the Bureau to obtain and examine all books, records and tax returns pertaining to the business, for which this liquor license is requested, and also any books, records and returns during the year in which any liquor license is in effect.
- Any change in the licensee's/applicant's licensed premises as defined in this application must be approved by the Bureau in advance.
- All new applicants must apply to the Alcohol and Tobacco Tax and Trade Bureau (TTB) for its <u>Retail Beverage Alcohol Dealers</u> permit. See the TTB's website at <u>https://www.ttb.gov/nrc/retail-beverage-alcohol-dealers</u> for more information.

Section V: Fee Schedule

Filing fee required. In addition to the license fees listed below, a filing fee of \$10.00 must be <u>included</u> with all applications.

<u>Please note:</u> For Licensees/Applicants in unorganized territories in Maine, the \$10.00 filing fee must be paid directly to County Treasurer. All applications received by the Bureau from licensees/applicants in unorganized territories must submit proof of payment was made to the County Treasurer together with the application.

Class (of License	Type of liquor/Establishments included	Fe	<u>ee</u>
Class]	This class incl Dining Cars; C Caterers	For the sale of liquor (malt liquor, wine and spirits) udes: Airlines; Civic Auditoriums; Class A Restaurants: Clubs w Golf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Tennis Ch	\$ ith caubs;	900.00 atering privileges; Vessels; Qualified
Class]	I-A This class incl	For the sale of liquor (malt liquor, wine and spirits) udes only hotels that do not serve three meals a day.	\$1	,100.00
Class	II This class incl Dining Cars; C	For the Sale of Spirits Only Judes: Airlines; Civic Auditoriums; Class A Restaurants; Clubs Bolf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Tennis Cl	\$ with ubs;	550.00 catering privileges; and Vessels.
Class	III This class inc Dining Cars; C Pool Halls; an	For the Sale of Wine Only ludes: Airlines; Civic Auditoriums; Class A Restaurants; Clubs Golf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Tennis Ch d Bed and Breakfasts.	\$ with ıbs; I	220.00 catering privileges; Restaurants; Vessels;
Class	IV This class inc Dining Cars; C Pool Halls; an	For the Sale of Malt Liquor Only ludes: Airlines; Civic Auditoriums; Class A Restaurants; Clubs Golf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Tennis Clu d Bed and Breakfasts.	\$ with bs; F	220.00 a catering privileges; Restaurants; Taverns;
Class	III and IV This class inc Dining Cars; (Pool Halls; an	For the Sale of Malt Liquor and Wine Only ludes: Airlines; Civic Auditoriums; Class A Restaurants; Clubs Golf Courses; Hotels; Indoor Ice-Skating Clubs; Indoor Tennis Ch d Bed and Breakfasts.	\$ with abs;]	440.00 a catering privileges; Restaurants; Vessels;
Class	V This class incl	For the sale of liquor (malt liquor, wine and spirits) udes only a Club without catering privileges.	\$	495.00
Class	X This class incl	For the sale of liquor (malt liquor, wine and spirits) ludes only a Class A Lounge	\$2	2,200.00
Class	XI This class incl	For the sale of liquor (malt liquor, wine and spirits) ludes only a Restaurant Lounge	\$	1,500.00

Section VI Premises Floor Plan

In an effort to clearly define your license premise and the areas that consumption and storage of liquor authorized by your license type is allowed, the Bureau requires all applications to include a diagram of the premise to be licensed.

Diagrams should be submitted on this form and should be as accurate as possible. Be sure to label the following areas: entrances, office area, coolers, storage areas, display cases, shelves, restroom, point of sale area, area for on-premise consumption, dining rooms, event/function rooms, lounges, outside area/decks or any other areas on the premise that you are requesting approval. Attached an additional page as needed to fully describe the premise.

Section VII: Required Additional Information for a Licensee/Applicant for an On-Premises Liquor License Who are Legal Business Entities

Questions 1 to 4 of this part of the application must match information in Section I of the application above and match the information on file with the Maine Secretary of State's office. If you have questions regarding your legal entity name or DBA, please call the Secretary of State's office at (207) 624-7752.

All Questions Must Be Answered Completely. Please print legibly.

1.	Exact legal name: Mian Noodle Bar
2.	Doing Business As, if any: <u>518 Noodle Bar</u>
3.	Date of filing with Secretary of State: <u>09/20/2018</u> State in which you are formed: <u>Maine</u>
4.	If not a Maine business entity, date on which you were authorized to transact business in the State of Maine:

5. List the name and addresses for previous 5 years, birth dates, titles of officers, directors, managers, members or partners and the percentage ownership any person listed: (attached additional pages as needed)

		Date of		Percentage of
Name	Address (5 Years)	Birth	Title	Ownership
Xue Qin Zheng	3 Perkins Dr. York Me	01/09/1984	manager	50.0000
Bing Zhou	5 Winterbrook Ct. York, ME	07/05/1979	manager	50.0000

(Ownership in non-publicly traded companies must add up to 100%.)
TOWN COUNCIL BOARDS AND COMMITTEES INTERVIEW FORM

ς.

to: From:	KITTERY TOWN COUNCIL COUNCILOR	and ^{Dow}	
RE:	APPOINTMENT TO Economic Develop	ment Committee	
Date of in	TERVIEW:	at13:30	a.m./p.m.
We have inte	Celestyne Bragg	, on the date and	l time
above. We a appointmen	approve recommendation of the applica 12-31-2024 ht for a term to expire on	ant and whole heartedly endors	se his/her
		Signatures	

ATTENDANCE RECORD (for reappointments only)

Excellent	
Good	
Poor	

Town of Kittery 200 Rogers Road Kittery, Maine 03904 PH: 207-439-0452 Fax: 207-439-6806

Banner Installation Application

Organization requesting:	Kittery	Little	League	

Event description:	Registration for	r the 2022	Little League	e season
for kids age	s 4 through 12			

Installation Information:

Installation dat	e:	2/1/2022
Removal date:	3,	/1/2022

Contact Information:

Name:	David	Evans

Address: 139 Brave Boat Harbor Road

Phone: 727-542-7548

Email: evansdavid83@gmail.com

Signature on this form indicates the requesting organization agrees to the Town of Kittery Policy regarding "Banners over Public Roads". (attached)

A D		
Signature:	Date:	1/4/2022
	D4(0) _	<u></u>

Town of Kittery Approval:	Date:
---------------------------	-------